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Abstract—This paper proves that the two-dimensional 
weighted number operator 

ωS  is a densely defined unbounded 
self adjoint operator in continuous-time Guichardet-Fock 
space );(2 ηΓL  . But when +∞<ωσ νsup , 

ωS is a bounded 
linear operator. Meanwhile this paper gives two 
representations of 

ωS . 
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where ),( tsω is nonnegative function on , 
nJ  is the orthogonal 

projection operator from );(2 ηΓL  to its linear subspace 

);( )(2 ηΓL n . Furthermore some conclusions related to are 
presented. 
 

Index Terms—continuous-time Guichardet-Fock space, 
weighted number operator, nonnegative real function, 
point-stae modified stochastic gradient. 
 

I. INTRODUCTION 
In 1984, Husdson and Patharathy proposed the quantum 

stochastic calculus theory[1],  which is a noncommutative 
extension of stochastic integral theory of  classical , and an 
operator stochastic integral theory[2]. Quantum stochastic 
integral has a very perfect development in Fock space, 
which can describe physical systems with properties, such as 
accretion and annihilation, so quantum stochastic integral 
has a wide range of applications in physics, engineering and 
other disciplines [2],[3]. 

Guichardet-Fock space is a basic concept in the quantum  
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field, which is mainly applied to quantum stochastic integral 
problems. Guichardet-Fock space is not only isomorphic 
with Fock of classical Itô stochastic integral theory in linear 
operations, but also richer than its spatial structure[4]. 
Therefore, it is very meaningful to study the relevant 
conclusions of  Guichardet-Fock space. 

In the literature [5], the author defined the weighted 
number operator, and studied its properties and applied it in 
quantum Markov semigroups in the Bernoulli functional 
space )(2 ΩL . In the literature [6], Attal discussed the 
continuous-time Guichardet-Fock space );(2 ηΓL the 
generalized operator Mallivin the variational theory, in 
which the operator has a maximum definition field, thus 
realizing the composition of the algorithm with the help of 
exponential vectors. In the literature [7], the author modified 
the stochastic gradient ∇  and point-stae stochastic gradient 

s∇ . The modified operator ∇~ , 
s∇
~ and its conjugate 

operator *~
s∇ which has the physical meaning of true 

annihilation and accretion. Thus, it can describe the physical 
system with accretion and annihilation. Reference [8] 
extends the modified stochastic gradient and Skorohod 
integral of [7], and provides the relationship between the 
modified stochastic gradient and Skorohod integral after 
extension.  In the literature [9], the author discussed the 
properties and representations of the number operator 
N in );(2 ηΓL  , and makes the first attempt at the 
representation of the operators in );(2 ηΓL . Then, in the 
literature [10], the author studied the Dirichlet forms with in 

);(2 ηΓL . Based on the above analysis, this paper proved 
that the properties and representations of the weighted 
number operator 

ωS in );(2 ηΓL . 
This paper is organized as follows. In section 2, we fix 

some necessary notation and recall main notion and facts 
about the Guichardet-Fock space. In section 3, we state and 
prove our main results.  

II. PRELIMINARIES 

Throughout the paper, let 
+R  be the set of all 

nonnegative real number, Γ  denotes the finite power set of 
, namely 

{ }∞<⊂= + σσΓ |#R , 
where σ#  means the cardinality of σ   as a set. For 1≥∀n ,  
let )(nΓ  be the collection of n elements subsets, namely 

{ }nn =∈= σΓσΓ |#)( , 
and agree that { }Φ=)0(Γ . Obviously, )(

0
n

n ΓΓ ≥= ∪ . For 
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convenience, τσ,  denotes the elements in Γ . Usually, we 
denote by )(2 ΓL the space of square integral 
complex-valued functions space on Γ . 

Let η be a complex separable Hilbert space, the inner 
product and norm denoted by 

η
⋅ and 

η
⋅ . The space 

);(2 ηΓL  of η -valued square-integral functions defined on 
Γ , well-known as product  

ηΓLηΓL ⊗≅ )();( 22 . 
The norm in );(2 ηΓL is ⋅ , and the inner product defined 
as 

);(,,d)(),(, 2 ηΓσσσ
Γ η

Lgfgfgf ∈∀= ∫ . 

Definition 1[4]. For Γτσs ∈∀∈∀ + ,,, Rt , define 

{ } { };:};{\:\;\:
};:min{:};:max{:
ssss

ssss
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∈=∧∈=∨

− σσσσσσσ
σσσσ  
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⎨
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∉
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.,0
,,1
τ
τ

τ s
s

s1 denotes the indicative function of τ .   

Definition 2[7]. For );(2 ηΓLf ∈∀ , the modified stochastic 
gradient f∇~  of f  be a η -valued process on 

+×RΓ defined as 

( ) +×∈∀∪−=∇ R1 Γτττ τ ),(),()(1),(~ ssfssf , 
and 

( ) }.d)(#|);({~Dom 22 ∫ +∞<∈=∇
Γ η

σσσηΓ fLf  

Definition 3[7]. For 
+∈∈∀ Rs),;(2 ηΓLf , the point-state 

modified stochastic gradient f∇~  of f   be a function on  
defined as 

( ) +×∈∀∪−=∇=∇ R1 Γττττ τ ),(),()(1),(~)(~ ssfssffs  
and its adjoint operator defined as 

Γτττ τ ∈∀=∇ ),\()()(~* sfsfs 1 . 
Remark 1 [7]. The point-state modified stochastic gradient 

s∇
~  and its adjoint *~

s∇ are bounded linear operator on 

);(2 ηΓL  and           

1~,1~ * =∇=∇ ss
. 

Lemma 1[9]. There's the only telescope 

);();(: )(2

0

2 ηΓηΓ n

n
LLJ

∞

=
⊕→ . 

It meets condition );(2 ηΓLf ∈∀ , existing 

);( )(2 ηΓLf n
n ∈ , 0≥∀n  makes nn ff ∞

=⊕= 0  and 

∑= n nff 22 . Here, );( )(2 ηΓ nL  naturally seen as the 

subspace of );(2 ηΓL . Specifically, ηηΓL =);( )0(2 . 
Definition 4 [10].  ),( tsω  is nonnegative real function on 

2
+R , two-dimensional weighted number operator 

ωS  of 

);(2 ηΓL as defined below 

,Dom),()()( ωωω σσνσ SfffS ∈=
 

and  

( ) .}d)()(|);({Dom 222 ∫ +∞<∈=
Γ ηωω σσσνηΓ fLfS

 

There ∑ ∑∈ ∈
=

σ σω ωσν
s s

ts ),()( , which is the number 

function of );(2 ηΓL . 

Definition 5 [10].  )(sh  is nonnegative real function on 

+R , 
 one-dimensional weighted number operator 

hN  of as  
defined below 

,Dom),()(#)( hhh NfffN ∈= σσσ
 

and  

( ) .}d)()(#|);({Dom 222 ∫ +∞<∈=
Γ η

σσσηΓ fLfN hh

 

There ∑∈
=

σ
σ

sh sh )()(# . 

Definition 6 [9]. The number operator N  in );(2 ηΓL  
defined as 

,Dom),(#)( NffNf ∈= σσσ  

with 

( ) .}d)(#|);({Dom 222 ∫ +∞<∈=
Γ η

σσσηΓN fLf
 

Remark 2 [10].  ),( tsω  is nonnegative real function on 
2
+R . 

(1) If 

⎩
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≠

=
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tssh
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then )(#)( σσνω h=  and .hNS =ω  
(2) If 
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≠
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.,0
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ts
tssh
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then σσνω #)( =  and .NS =ω  

III. MAIN RESULTS 
In the present section, we will prove 

ωS is the linear 
operator of unbounded densely defined self adjoint in 

);(2 ηΓL , but when +∞<)(sup σνωσ
,  

ωS  is a bounded 
linear operator. Next, we obtains the following two 
representations of 

ωS and related conclusions. 

Theorem 1. ),( tsω  is nonnegative real function on 2
+R , 

If +∞<≥ ),(sup 0, tsts ω , then
ωS be a linear densely 

defined and unbounded operator in );(2 ηΓL . 
Proof: Firstly, we will prove that the 

ωS is densely 

defined operator in );(2 ηΓL . 

+∞<=
≥

),(sup
0,

ts
ts
ωα . 

For );(,0 )(2 ηΓL nfn ∈∀≥∀ , 
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and 
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d)(d)(
242

24222
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fn
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α

σσασσ
Γ ηΓ ηωω  

which implies that 
ωSf Dom∈ . And because the algebraic 

direct sum );( )(2
0 ηΓ n

n L∞
=⊕ of }0);;({ )(2 ≥nL n ηΓ are 

densely defined linear subspace of );(2 ηΓL , hence 
ωS is 
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densely defined operator. Next, we prove that the 
ωS  is 

unbounded operator. By (1) 
)(sup 2

1),;(2
∞→∞→=≥

=∈

nnfSfS
fLf

αω
ηΓ

ω
, 

then we know that the ωS  is unbounded. 
	

Theorem 2. ),( tsω  is nonnegative real function on 2
+R , 

If +∞<)(sup σνωσ
, then

ωS is a bounded operator in 

);(2 ηΓL , and 

)(sup σνω
σ

ω =S . 

Proof: Hypothesis )(sup σνβ ωσ= , for 
ωSf Dom∈∀ , 

( )

.

d)(
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f

ffS

β
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Hence 
ωS  is a bounded operator and βω ≤S . 

     On the other hand, for 
ωSf Dom∈∀ , 

)()()()()()( σσσσνσσν ωωωω fSfSff ≤== , 

which implies that 
ωωσ σν S≤)(sup . In conclusion 

)(sup σνω
σ

ω =S . 

	
Theorem 3. ),( tsω  is nonnegative real function on 2

+R . In 
the weak sense, the two-dimensional weighted number 
operator 

ωS  in );(2 ηΓL  can be expressed as follows 

.dd~~~~),( ** tstsS ttss∫ ∫
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Proof: Fist of all, we prove that integral 

tsgfts ttss dd,~~~~),( **∫ ∫
+ +

∇∇∇∇
R R

ω                (3) 

exists. For 
+∈∀∈∀ RsSgf ,Dom, ω
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Because of Cauchy-Schwartz inequality, 
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Hence, the integral (3) exists. 
Next, for );(,Dom 2 ηΓω LgSf ∈∀∈∀ , have 

tsgftsts

tsgfts ttss
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which implies that (2) establishment. 
	

Theorem 4. The two-dimensional weighted number 
operator 

ωS  is a self-adjoint operator in );(2 ηΓL . 
Proof: For ,Dom, ωSgf ∈∀ , 
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which implies that ωω SS =* , namely 
ωS is self-adjoint 

operator. 
 

Theorem 5. ),( tsω  is nonnegative real function on 2
+R .  If 

for ctsts ≡∈∀ + ),(,, ωR , then two-dimensional weighted  
number operator 

ωS have spectrum decomposition in 

);(2 ηΓL , namely 

.
1

2∑
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There nJ is the orthogonal projection operator 

from );(2 ηΓL  to  its linear subspace );( )(2 ηΓL n  , namely 
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Proof: According to Lemma 1 and the proof of 
Theorem 1, it can be inferred that }1),;({ )(2 ≥nn ηΓL are 
linear subspace of );(2 ηΓL  and Algebra in Direct Sums 

);( )(2
1 ηΓ n

n L∞
=⊕ is linear densely defined space, and  

ωηΓ SL n
n Dom);( )(2
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Hence, for );(2 ηΓLf ∈∀ , 
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Next, by Definition 4, when cts ≡),(ω , 



 
Weighted number operator in continuous-time Guichardet-Fock Space 

                                                                                                                                                                               www.ijeas.org 10 
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Namely,∑

∞

=1
2

n
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is convergent in );(2 ηΓL .  

For );(2 ηΓLf ∈∀ , 
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which implies that ∑
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n nJcnSω . 

 
Theorem 6. ),( tsω  is nonnegative real function on 2

+R . 

}1),;({ )(2 ≥= nM n ηΓL is a core of two-dimensional 
weighted number operator

ωS , i.e.  

ωSM ⊂ and 
ωω SMS =| . 

Proof: According to the proof of Theorem 5, it can be 
inferred that ωSM Dom⊂ . 

If MS ∈∈ nω ξξ ,Dom0 , and )(0 ∞→→ nn ξξ , then 
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which implies that 
ωω SMS =|  and  the image of 

ωω SMS =|  is densely, i.e. M  is core of two-dimensional 
weighted  number operator 

ωS . 

� 

Theorem 7. If ),( tsω  is nonnegative real function on 2
+R  

and )(σνω is bounded,  then NDom  is a core of 
ωS . In 

particular, for bounded nonnegative real function )(sh on 

+R ,  NDom  is a core of 
hN . 

Proof: For +∞<= ≥ ),(sup 0, tsts ωα , have 
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ω
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Namely ωSf Dom∈ . For ),;(,0 )(2 ηΓ nLfn ∈∀≥∀  have 

)()()( )( σσσ Γ ff n1= , 

,d)(

d)(d)(
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==
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fnfn
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Γ η
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which implies that Nf Dom∈ , i.e.  

NnL n Dom}1),;({ )(2 ⊂≥ηΓ . 
According to Theorem 6, NDom is a core of 

ωS . Similarly, 
it can be inferred that NDom  is a core of 

hN . 
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