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Abstract—In this paper, we give some probability 

inequalities for the function of continuous parameter 

demimartingales based on probability  inequalities for 

discrete parameter demimartingales and 

demisubmartingales. 
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I. INTRODUCTION 
  Notation and conventions. In this paper, let  

{ }, 1nS n ≥ be a sequence of random variables defined on 

the probability space ( ),  ,  .Ω ΡF 0 0S = ,and ( ) I A be 

the indicator function of the set A . 

The concept of demimartingales was first introduced by 

Newman and Wright [1]. 

Definition 1.1 [1]  Let{ }, 1nS n ≥ be an 1L  sequence of 

random variables. Assume that for 1,2,n = K  

1 1[( ) ( , , )] 0,n n nE S S f S S+ − ≥L  

for all componentwise nondecreasing functions ( )f ⋅ such 

that the expectation is defined. Then { }, 1nS n ≥  
is called a 

demimartingale. If in addition the function ( )f ⋅ is assumed 

to be nonnegative, the sequence { }, 1nS n ≥ is called a 

demisubmartingale. 

After the concept of demimartingales was introduced, 

many scholars established some interesting conclusions for 

demimartigales，one can refer to [1-9], which  promotes the 

development of the dependence sequences. For instance, 

Newman and Wright[1] obtained Doob-type maximal 

inequalities and upcrossing inequalities for demimartingales. 

Christofides[2] provided Chow-type maximal inequalities 

and some properties of demimartingales . Prakasa[3]showed 

maximal and minimal inequalities for demimartingales in. 

Hu et al. [4] presented maximal inequalities for stopping time 

sequences of demimartingales. Wood[5] provided maximal 

inequalities for separable demimartingales. Subsequently, 

Hadjikyriakou[10] introduced the definition of 

demimartingales with continuous parameters. 

Definition 1.2 [10]  The stochastic process { }, [0,T]tS t∈  
is 

called a demimartingale if for all , [0, ]s t T∈  and for all 

s t≤ , 

1
[( ) ( , , , , 1, , )] 0

kt s u u iE S S f S S u s i k− ≤ = ≥L L , 

for all componentwise nondecreasing functions ( )f ⋅ such 

that the expectation is defined. Then { , [0, ]}tS t T∈  
is 

called a continuous parameter demimartingale. If in addition 

the function ( )f ⋅ is assumed to be nonnegative, the 

sequence{ , [0, ]}tS t T∈  is called a continuous parameter 

demisubmartingale. 

In reference [11], Prakasa further provided an 

alternative definition for continuous parameter 

demisubmartingales. 

Definition1.3[11]  Let the process { , [0, ]}tS t T∈ be a 

stochastic process defined on a complete probability space 

( , , )PΩ F . It is called a demisubmartingale if for 

0 10 , , 1kt t t T k= < < = ≥L ,the sequence 

{ , 0,1, , 1}
jt
S j k= −L  is a demisubmartingale. 

Definition1.4[12]  A process { , [0, ]}tS t T∈  is said to be 

separable if there is a measurable set B  with ( ) 0P B =  

and a countable subset [0, ]Tτ ⊆  such that for every 

closed interval A⊆ R  and any open interval 

( , ) [0, ]a b T⊆ , the sets 

{ : ( ) , ( , )},tS A t a bω ω ∈ ∈  
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and 

{ : ( ) , ( , ) },tS A t a bω ω τ∈ ∈ ∩  

differ at most by a subset of B .  

Inspired by references [2] and [5], this paper presents 

probability inequalities for continuous parameter 

demisubmartingale functions. 

II. MAIN RESULTS  

Theorem 2.1  Let stochastic process { , [0, ]}tS t T∈  be a 

continuous parameter demimartingale, ( )g ⋅ be a 

nondecreasing convex function. Then the stochastic 

process { }, [0,T]tS t∈ is called a continuous parameter 

demimartingale.

 

 

Proof.  we need to prove that{ ( ), 0,1, , 1}
jt

g S j k= −L  

is a demisubmartingale for any 
0 10 [0, ], 1kt t t T k= < < < ∈ ≥L ,. 

Note that { , 0,1, , 1}
jt
S j k= −L  is a  

demisubmartingale by using Definition 1.4.  

Define that 
0

( ) ( )( ) lim
x y

g y g xh x
y x→ −

−
=

−  

is the left derivative of function ( )g ⋅ . It follows From 

the convexity of the function ( )g ⋅ that the function 

( )h ⋅ is a nonnegative and nondecreasing function.  

Thus 

( ) ( ) ( (  ) ).g y g x y x h x− ≥ − ( )2.1  

It can be verified that for any nonnegative and 

componentwise nondecreasing function ( )g ⋅  by using 

Equation (2.1), where 

1 1

1 1

1 1

*

[( ( ) ( )) ( ( ), , ( ))]

[( ) ( ) ( ( ), , ( ))]

[( ) ( , , )],

j j j

j j j j

j j j

t t t t

t t t t t

t t t t

E g S g S f g S g S

E S S h S f g S g S

E S S f S S

+

+

+

−

≥ −

= −

L

L

L

 

where 

1 1

*( , , ) ( ) ( ( ), , ( )).
j j jt t t t tf S S h S f g S g S=L L  

Since *( )f ⋅  is a arbitrary non-negative function of 

nonnegative and componentwise nondecreasing, the 

sequence { , 0,1, , 1}
jt
S j k= −L  is a demisubmartingale. 

Thus 

1 1

*[( ) ( , , )] 0.
j j jt t t tE S S f S S
+
− ≥L  

Then, 

1 1
[( ( ) ( )) ( ( ), , ( ))] 0.

j j jt t t tE g S g S f g S g S
+
− ≥L  

Hence, the sequence { ( ), 0,1, , 1}
jt

g S j k= −L
 
is a 

demisubmartingale. 

By Definition 1.4 and the fact that jt  
is arbitrary, 

{ ( ), [0, ]}tg S t T∈ is a continuous parameter 

demisubmartingale. 

As an application of Theorem 2.1, we can obtain the 

following conclusion. 

Corollary 2.1  Let stochastic process { , [0, ]}tS t T∈  be 

a continuous parameter demimartingale, Then 

{ , [0, ]}tS t T+ ∈ is a continuous parameter demimartingale 

and { , [0, ]}tS t T− ∈  is also a continuous parameter 

demisubmartingale.

 

 

Proof.  Since the function ( )g x x+= is a non-decreasing 

convex function, by Theorem 2.1, we know 

that { , [0, ]}tS t T+ ∈  is a continuous parameter 

demisubmartingale. Let , [0, ]t tY S t T= − ∈  . It is easy 

to see that { , 1}tY t ≥ is a continuous parameter 

demimartingale. Since t tY S+ −= , by Theorem 1, we get 

that { , [0, ]}tS t T− ∈  is also a continuous parameter 

demisubmartingale. 

Theorem 2.2  Let { , 1}nS n ≥  be a demisubmartingale, 

and ( )g ⋅ be a nondecreasing convex function. Then, for 

anyλ∈R , we have 

1
{max ( ) }1

(max ( ) ) ( ) (2.2)
ii k

i kg Si k
P g S g S dP

λ
λ λ

≤ ≤
>≤ ≤

≤ > ∫
 

and 

( )
1

1 {min ( ) }1

1

(min ( ) ) [ ( )] ( )

[ ( )] ( ) 2.3
ii k

i kg Si k

k

P g S E g S g S dP

E g S E g S

λ
λ λ

≤ ≤
>≤ ≤

≤ ≥ −

≥ −

∫
∣ ∣.                  

 

Proof.  Let i  be the smallest index such that it 
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holds ( )ig S λ> . When i n= , we have 

( ) ,1 1kg S k nλ≤ ≤ ≤ − and ( )ng S λ>  . 

Let
1
{max ( ) }k ii k

A g S λ
≤ ≤

= >  .  

Then 

( ) ( )( ) ( )

{ }
1

{ } { }
1

1

{ } { }
1 1

1

1
{ }

( ) ( )

[ ( ) ( ( )

{ }

( )) ]

( ) ( ( ) ( ))

( )

_ 1 _ _ .{ }

k

k

k kA i n
n
k

n k ni n i n
n
k k

n k ni n i n
n n

k
k

n

g S dP g S dP

g S dP g S g S dP

g S dP g S g S dP

P A

g S n g S n I A n dP

λ

Ω

=
=

= =
=

−

= =
= =

−

=

=

= + −

⎡ ⎤⎣ ⎦

= + −

= +

+ −

∑∫ ∫

∑ ∫ ∫

∑ ∑∫ ∫

∑∫

 

Define that 
0

( ) ( )( ) lim
x y

g y g xh x
y x→ −

−
=

−
 

is the left derivative of function ( )g ⋅ . From the convexity 

and nondecreasing of the function ( )g ⋅ , it follows that 

the function ( )h ⋅  is a nonnegative nondecreasing 

function, and  

1 1[( ( ) ( )) ( )] [( ) ( ) ( )] .n n n n n n ng S g S I A dP S S h S I A dP+ +Ω Ω
− ≥ −∫ ∫  

Since ( )nI A  is a nonnegative and componentwise 

nondecreasing function with respect to 1{ , , }nS SL , 

( ) ( )n nh S I A is also a nonnegative and coordinate-wise 

nondecreasing function with respect to 1{ , , }nS SL . 

Since { , 1}nS n ≥ is a demisubmartingale, we have 

1[( ) ( ) ( )] 0.n n n nS S h S I A dP+Ω
− ≥∫  

Thus 

( ) ( ).
k

k kA
g S dP P Aλ≥∫  

Hence, equation (2.2) is proved. 

Let 
1
{min ( ) }k ii k

B g S λ
≤ ≤

= >  , 

and i  be the smallest index such that it holds ( )ig S λ≤ . 

Therefore, by the same reasoning, we can similarly 

deduce that 
1

1
1

( ) ( ) ( ( ) ( )) .
c c
k n

k
c

k k n nB B
n

g S dP P B g S g S dPλ
−

+
=

≤ + −∑∫ ∫  

Thus 
1

1
1

( ) ( ) ( ( ) ( )) .
c c
k n

k
c
k k n nB B

n
P B g S dP g S g S dPλ

−

+
=

≥ − −∑∫ ∫  

Since ( )h x  is the left derivative of ( )g ⋅ and ( )g ⋅  is a 

nonnegative function with nondecreasing components, 

we can conclude from the definition of the 

demisubmartingale that: 

( ) ( )( ) ( )
1

1
1

1
1

1

[( ) ( ) ( )

{ } { } { }

] 0.

k

n
k

n n n n
n

g S n g S n I B n dP

S S h S I B dP

−

=

−

+Ω
=

Ω
⎡ ⎤⎣ + −

≥ − ≥

⎦∫

∫

∑

∑
 

And 
1

1
1

1

1
1

1

1
1

1

1

1

( ) ( ) ( ( ) ( ))

( ( ) ( ))

( ) [ ( ) ( )]

( ) [ ( )] [ ( )]

[ ( )] ( )

[ ( )] ( ) | .

c c
k n

n

c
k

c
k

k

k
c
k k n nB B

n
k

n nB
n

k

k n nB
n

k kB

kB

k

P B g S dP g S g S dP

g S g S dP

g S dP E g S g S

g S dP E g S E g S

E g S g S dP

g S E g SE

λ
−

+
=

−

+
=

−

+
=

≥ − −

− −

= − −

= − +

= −

−≥

∑∫ ∫

∑∫

∑∫

∫

∫
∣

 

Hence, equation (2.3) is proved. 

Theorem 2.3. Let stochastic process { , [0, ]}tS t T∈  be 

a separable continuous parameter demisubmartingale and 

( )g ⋅ be a nondecreasing convex function. For any 

λ∈R , let 

[0, ]
{ : inf ( ) }T tt T

B g Sω λ
∈

= ∈Ω ≤  

and  

[0, ]
{ : sup ( ) }.T t

t T
A g Sω λ

∈
= ∈Ω >  

Then  

( ) ( ) (2.4)
T

T TA
P A g S dPλ ≤ ∫  

and  

0( ) [ ( )] ( ). (2.5)T TP B E g S E Sλ ≥ − ∣g ∣  

Proof. Since { , [0, ]}tS t T∈ is a demisubmartingale,  

{ ( ), [0,T]}tg S t∈ is also a demisubmartingale by 

Theorem 1. Furthermore, from the separability 
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of{ , [0, ]}tS t T∈  and Theorem 2, it is evident that (2.4) 

and (2.5) hold. Thus, the conclusion is established. 
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