Some Probability Inequalities for the Function of Continuous Parameter Demimartingales

Zhenwen Li, Ruijie Jia

Abstract—In this paper, we give some probability inequalities for the function of continuous parameter demimartingales based on probability inequalities for discrete parameter demimartingales and demisubmartingales.

Keywords—continuous parameter demimartingales; continuous parameter demisubmartingales; probability inequalities

I. INTRODUCTION

Notation and conventions. In this paper, let $\{S_n, n \ge 1\}$ be a sequence of random variables defined on the probability space (Ω, F, P) . $S_0 = 0$, and I(A) be the indicator function of the set A.

The concept of demimartingales was first introduced by Newman and Wright^[1].

Definition 1.1 ^[1] Let $\{S_n, n \ge 1\}$ be an L^1 sequence of random variables. Assume that for n = 1, 2, K

$$E[(S_{n+1} - S_n)f(S_1, L_n, S_n)] \ge 0$$

for all componentwise nondecreasing functions $f(\cdot)$ such that the expectation is defined. Then $\{S_n, n \ge 1\}$ is called a demimartingale. If in addition the function $f(\cdot)$ is assumed to be nonnegative, the sequence $\{S_n, n \ge 1\}$ is called a demisubmartingale.

After the concept of demimartingales was introduced, many scholars established some interesting conclusions for demimartigales , one can refer to [1-9], which promotes the development of the dependence sequences. For instance, Newman and Wright^[1] obtained Doob-type maximal inequalities and upcrossing inequalities for demimartingales. Christofides^[2] provided Chow-type maximal inequalities and some properties of demimartingales . Prakasa^[3]showed maximal and minimal inequalities for demimartingales in. Hu et al.^[4] presented maximal inequalities for stopping time sequences of demimartingales. Wood^[5] provided maximal inequalities for separable demimartingales. Subsequently, Hadjikyriakou^[10] introduced the definition of demimartingales with continuous parameters.

Definition 1.2^[10] The stochastic process $\{S_t, t \in [0, T]\}$ is called a demimartingale if for all $s, t \in [0, T]$ and for all $s \le t$,

$$E[(S_t - S_s)f(S_{u_1}, L, S_{u_k}, u_i \le s, i = 1, L, k)] \ge 0,$$

for all componentwise nondecreasing functions $f(\cdot)$ such that the expectation is defined. Then $\{S_t, t \in [0, T]\}$ is called a continuous parameter demimartingale. If in addition the function $f(\cdot)$ is assumed to be nonnegative, the sequence $\{S_t, t \in [0, T]\}$ is called a continuous parameter demisubmartingale.

In reference [11], Prakasa further provided an alternative definition for continuous parameter demisubmartingales.

Definition1.3^[11] Let the process $\{S_t, t \in [0, T]\}$ be a stochastic process defined on a complete probability space (Ω, F, P) . It is called a demisubmartingale if for $0 = t_0 < t_1 < L$, $t_k = T, k \ge 1$, the sequence $\{S_{t_1}, j = 0, 1, L, k - 1\}$ is a demisubmartingale.

Definition1.4^[12] A process $\{S_t, t \in [0, T]\}$ is said to be separable if there is a measurable set B with P(B) = 0and a countable subset $\tau \subseteq [0, T]$ such that for every closed interval $A \subseteq \mathbb{R}$ and any open interval $(a,b) \subseteq [0,T]$, the sets

$$\{\omega: S_t(\omega) \in A, t \in (a,b)\},\$$

а

and

$$\{\omega: S_t(\omega) \in A, t \in (a,b) \cap \tau\},\$$

differ at most by a subset of B.

Inspired by references [2] and [5], this paper presents probability inequalities for continuous parameter demisubmartingale functions.

II. MAIN RESULTS

Theorem 2.1 Let stochastic process $\{S_t, t \in [0,T]\}$ be a continuous parameter demimartingale, $\mathbf{g}(\cdot)$ be a nondecreasing convex function. Then the stochastic process $\{S_t, t \in [0,T]\}$ is called a continuous parameter demimartingale.

Proof. we need to prove that $\{g(S_{t_j}), j = 0, 1, L, k-1\}$ is a demisubmartingale for any $0 = t_0 < t_1 < L < t_k \in [0, T], k \ge 1$,

Note that $\{S_{t_j}, j = 0, 1, L, k-1\}$ is

demisubmartingale by using Definition 1.4.

Define that $h(x) = \lim_{x \to y=0} \frac{g(y) - g(x)}{y - x}$

is the left derivative of function $g(\cdot)$. It follows From the convexity of the function $g(\cdot)$ that the function $h(\cdot)$ is a nonnegative and nondecreasing function.

Thus

$$g(y) - g(x) \ge (y - x)h(x).$$
 (2.1)

It can be verified that for any nonnegative and componentwise nondecreasing function $g(\cdot)$ by using Equation (2.1), where

$$E[(g(S_{t_{j+1}}) - g(S_{t_j}))f(g(S_{t_1}), L, g(S_{t_j}))] \\\geq E[(S_{t_{j+1}} - S_{t_j})h(S_{t_j})f(g(S_{t_1}), L, g(S_{t_j}))] \\= E[(S_{t_{j+1}} - S_{t_j})f^*(S_{t_1}, L, S_{t_j})],$$

where

$$f^*(S_{t_1}, L_{s_{t_j}}) = h(S_{t_j})f(g(S_{t_1}), L_{s_{t_j}})).$$

Since $f^*(\cdot)$ is a arbitrary non-negative function of nonnegative and componentwise nondecreasing, the

sequence $\{S_{t_j}, j = 0, 1, L, k-1\}$ is a demisubmartingale. Thus

Then.

$$E[(g(S_{t_{j+1}}) - g(S_{t_j}))f(g(S_{t_1}), L, g(S_{t_j}))] \ge 0.$$

 $E[(S_{t_{i,1}} - S_{t_i})f^*(S_{t_i}, L, S_{t_i})] \ge 0.$

Hence, the sequence $\{g(S_{t_j}), j = 0, 1, L, k-1\}$ is a demisubmartingale.

By Definition 1.4 and the fact that t_j is arbitrary, $\{g(S_t), t \in [0, T]\}$ is a continuous parameter demisubmartingale.

As an application of Theorem 2.1, we can obtain the following conclusion.

Corollary 2.1 Let stochastic process $\{S_t, t \in [0, T]\}$ be a continuous parameter demimartingale, Then $\{S_t^+, t \in [0, T]\}$ is a continuous parameter demimartingale and $\{S_t^-, t \in [0, T]\}$ is also a continuous parameter demisubmartingale.

Proof. Since the function $g(x) = x^+$ is a non-decreasing convex function, by Theorem 2.1, we know that $\{S_t^+, t \in [0,T]\}$ is a continuous parameter demisubmartingale. Let $Y_t = -S_t, t \in [0,T]$. It is easy to see that $\{Y_t, t \ge 1\}$ is a continuous parameter demimartingale. Since $Y_t^+ = S_t^-$, by Theorem 1, we get that $\{S_t^-, t \in [0,T]\}$ is also a continuous parameter demisubmartingale.

Theorem 2.2 Let $\{S_n, n \ge 1\}$ be a demisubmartingale, and $g(\cdot)$ be a nondecreasing convex function. Then, for any $\lambda \in \mathbb{R}$, we have

$$\lambda P(\max_{1 \le i \le k} g(S_i) \le \lambda) > \int_{\{\max_{1 \le i \le k} g(S_i) > \lambda\}} g(S_k) dP(2.2)$$

and

$$\begin{split} &\lambda P(\min_{1 \le i \le k} g(S_i) \le \lambda) \ge E[g(S_1)] - \int_{\{\min_{1 \le i \le k} g(S_i) > \lambda\}} g(S_k) dP \\ &\ge E[g(S_1)] - E|g(S_k)| \ . \end{split}$$

Proof. Let i be the smallest index such that it

www.ijeas.org

holds $g(S_i) > \lambda$. When i = n, we have $g(S_k) \le \lambda, 1 \le k \le n-1$ and $g(S_n) > \lambda$. Let $A_k = \{\max_{1 \le i \le k} g(S_i) > \lambda\}$.

Then

ſ

$$\begin{aligned} & \sum_{A_k} g(S_k) dP = \sum_{n=1}^{k} \int_{\{i=n\}} g(S_k) dP \\ &= \sum_{n=1}^{k} \left[\int_{\{i=n\}} g(S_n) dP + \int_{\{i=n\}} (g(S_k) - g(S_n)) dP \right] \\ &= \sum_{n=1}^{k} \int_{\{i=n\}} g(S_n) dP + \sum_{n=1}^{k-1} \int_{\{i=n\}} (g(S_k) - g(S_n)) dP \\ &= \lambda P(A_k) + \\ &= \sum_{n=1}^{k-1} \int_{\Omega} \left[\left(g\left(S_{n-1} + 1 \right) - g\left(S_{n-1} + 1 \right) \right) I\left(A_{n-1} + 1 \right) \right] dP. \end{aligned}$$

Define that $h(x) = \lim_{x \to y \to 0} \frac{g(y) - g(x)}{y - x}$

is the left derivative of function $g(\cdot)$. From the convexity and nondecreasing of the function $g(\cdot)$, it follows that the function $h(\cdot)$ is a nonnegative nondecreasing function, and

$$\int_{\Omega} [(g(S_{n+1}) - g(S_n))I(A_n)]dP \ge \int_{\Omega} [(S_{n+1} - S_n)h(S_n)I(A_n)]dP.$$

Since $I(A_n)$ is a nonnegative and componentwise
nondecreasing function with respect to $\{S_1, L, S_n\}$,
 $h(S_n)I(A_n)$ is also a nonnegative and coordinate-wise
nondecreasing function with respect to $\{S_1, L, S_n\}$.
Since $\{S_n, n \ge 1\}$ is a demisubmartingale, we have

$$\int_{\Omega} [(S_{n+1} - S_n)h(S_n)I(A_n)]dP \ge 0.$$

Thus

$$\int_{A_k} g(S_k) dP \ge \lambda P(A_k).$$

Hence, equation (2.2) is proved.

Let
$$B_k = \{\min_{1 \le i \le k} g(S_i) > \lambda\}$$
,

and *i* be the smallest index such that it holds $g(S_i) \le \lambda$. Therefore, by the same reasoning, we can similarly deduce that

$$\int_{B_{k}^{c}} g(S_{k}) dP \leq \lambda P(B_{k}^{c}) + \sum_{n=1}^{k-1} \int_{B_{n}^{c}} (g(S_{n+1}) - g(S_{n})) dP.$$

Thus

$$\lambda P(B_k^c) \ge \int_{B_k^c} g(S_k) dP - \sum_{n=1}^{k-1} \int_{B_n^c} (g(S_{n+1}) - g(S_n)) dP.$$

Since h(x) is the left derivative of $g(\cdot)$ and $g(\cdot)$ is a nonnegative function with nondecreasing components, we can conclude from the definition of the demisubmartingale that:

$$\sum_{n=1}^{k-1} \int_{\Omega} \left[\left(g\left(S\{n+1\} \right) - g\left(S\{n\} \right) \right) I\left(B\{n\} \right) \right] dP$$

$$\geq \sum_{n=1}^{k-1} \int_{\Omega} \left[\left(S_{n+1} - S_n \right) h(S_n) I(B_n) \right] dP \ge 0.$$

And

$$\begin{split} \lambda P(B_k^c) &\geq \int_{B_k^c} g(S_k) dP - \sum_{n=1}^{k-1} \int_{B_n^c} (g(S_{n+1}) - g(S_n)) dP \\ &- \sum_{n=1}^{k-1} \int_{B_n} (g(S_{n+1}) - g(S_n)) dP \\ &= \int_{B_k^c} g(S_k) dP - \sum_{n=1}^{k-1} E[g(S_{n+1}) - g(S_n)] \\ &= \int_{B_k^c} g(S_k) dP - E[g(S_k)] + E[g(S_1)] \\ &= E[g(S_1)] - \int_{B_k} g(S_k) dP \\ &\geq E[g(S_1)] - E[g(S_k)] \,. \end{split}$$

Hence, equation (2.3) is proved.

Theorem 2.3. Let stochastic process $\{S_t, t \in [0,T]\}$ be a separable continuous parameter demisubmartingale and $g(\cdot)$ be a nondecreasing convex function. For any $\lambda \in \mathbb{R}$, let

$$B_T = \{ \omega \in \Omega : \inf_{t \in [0,T]} g(S_t) \le \lambda \}$$

and

$$A_T = \{ \omega \in \Omega : \sup_{t \in [0,T]} g(S_t) > \lambda \}.$$

Then

$$\lambda P(A_T) \le \int_{A_T} g(S_T) dP \tag{2.4}$$

and

$$\lambda P(B_T) \ge E[g(S_0)] - E| g(S_T)|. \quad (2.5)$$

Proof. Since $\{S_t, t \in [0,T]\}$ is a demisubmartingale, $\{g(S_t), t \in [0,T]\}$ is also a demisubmartingale by Theorem 1. Furthermore, from the separability of $\{S_t, t \in [0, T]\}$ and Theorem 2, it is evident that (2.4)

and (2.5) hold. Thus, the conclusion is established.

REFERENCES

- NEMAN C M, WRIGHT A L. Associated random variables and martingale inequalities[J]. Zeitschrift Für Wahrscheinlichkeitstheorie and Verwandte Gebiete, 1982, 59(3):361-371.
- [2] CHRISTOFIDES T C. Maximal inequalities for demimartingales and a strong law of large numbers[J].Statistics & Probability Letters, 2000, 50(4):357-363 •
- [3] PRAKASA RAO B L S. Whittle type inequality for demisubmartingales[J]. Proceedings of theAmerican Mathematical Society, 2002, 130(12):3719-3724.
- [4] HU S H, WANG X J,and YANG W Z. A note on the inequalities for N-demimartingales and demimartingales[J].Journal of Systems Science & Mathematical Sciences, 2010, 30(8):1052-1058.
- [5] WOOD T E. Sample paths of demimartingales[M]. New York: Springer, 1983.
- [6] CHRISTOFIDES T C, HADJIKYRIAKOU. Maximal and moment inequalities for demimartingales and N-demimartingales[J]. Statistics & Probability Letters, 2012, 82(3):683-691.
- [7] WANG X J, HU S H, YANG W Z, SHEN Y. Some new results for demimartingales[J]. Applied Mathematics-A Journal of Chinese Universities Series B, 2011, 26(1):14-22.
- [8] WANG X J, PRAKASA RAO B L S, HU S H, YANG W Z. On some maximal inequalities for demimartingales and N-demimartingales based on concave Young functions[J]. Journal of Mathematical Analysis and Applications, 2012, 396(2):434-440.
- [9] HU S H, WANG X H, YANG W Z, WANG X J. Some inequalities for demimartingales and N-demimartingales[J]. Statistics & Probability Letters, 2012, 82(2):232-239.
- [10] HADJIKYRIAKOU. Probability and Moment Inequalities for Demimartingales and Associated Random Variables[M].Cyprus: University of Cyprus, Faculty of Pure and Applied Sciences, 2010.
- [11] PRAKASA RAO B L S. Associated Sequences, Demimartingales and Nonparametric Inference[M]. New York: Springer Basel, 2012.
- [12] DOOB J L. Stochastic Processes[M]. New York: Wiley, 1953.

Zhenwen Li, College of Mathematics and Statistics, Northwest Normal University, Lanzhou, China.

Ruijie Jia, College of Mathematics and Statistics, Northwest Normal University, Lanzhou, China.