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Abstract—It is known that two types of unstable phenomena 

might occur while the compressor operates near its maximum 

achievable pressure rise. Those might limit the operation of gas 

turbine jet engines. Under either one of the two unstable 

conditions, a moderate disturbance can result in system 

instability so that the compression system might either 

experience a large amplitude oscillation (corresponding to the 

so-called “surge”) or jump into a very inefficient operation at 

constant mass flux and  low pressure-rise (corresponding to the 

so-called “stall”). In a previous study (Liaw and Abed, 1996), we 

had presented the study of stall behaviour in axial flow 

compressors by using Moore-Greitzer’s model proposed in 1986. 

Not only the condition for the occurrence of stall wave was 

derived, a quadratic type control law was also proposed to 

prevent the appearance of stall in compressor dynamics. In this 

paper, we extend those results to focus on the study of surge 

behaviour by using the same model without considering the 

dynamics of stall wave. Conditions for local stability and 

non-local dynamical behavior of axial flow compressor are 

analytically obtained by using system linearization and 

bifurcation theorem. Numerical results will also be presented to 

show the linkage between bifurcation phenomena and system 

instabilities. 

 
Index Terms—Axial flow compressor, bifurcation, stability.  

 

I. INTRODUCTION 

In the recent years, it has attracted lots of attention in the 

study of axial flow compressor. One of the major reasons is 

that the flow can become unstable when an axial flow 

compressor operates close to its maximum achievable 

pressure-rise. Those instabilities put a large stress on the 

engine, and in some cases the engine needs to turn off in order 

to recover back to the original operation [1]. Among them, 

there are two primary types of instabilities that occur in the 

flow through the axial flow compressor. One is the so-called 

“surge,” which is commonly characterized by large-amplitude 

oscillations of the flow through the compressor. During part 

of the cycle, the mean mass flow may become reversed, 

thrusting air out from the front end of the engine. This puts a 

large stress on the components of the engine and seriously 

impairs system. The other is the so-called “rotating stall,” 

which is corresponding to a travelling wave of gas around the 

annulus of the compressor and results in a very inefficient 

operation at constant mean mass flow rate and low pressure 
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rise [2]. Both rotating stall and surge behavior can reduce the 

pressure rise in the compressor, cause rapid heating of blades, 

and might induce severe mechanical distress.  

In 1986, Moore and Greitzer [1] extended the results of [3] 

and proposed a third-order differential equation model to 

describe both surge and rotating stall phenomena occurring in 

axial flow compression systems. That model incorporates 

asymmetric dynamics, while employing an axisymmetric 

steady-state compressor characteristic. Based on Moore and 

Greitzer's model [1], the stall behavior of axial flow 

compression system was found to be attributed to the 

appearance of the so-called “transcritical bifurcation” [4] or 

the so-called “pitch-fork bifurcation” [5] depending on the 

representation of system state. In practical applications, a 

surge (or stall) line is usually drawn to provide a safe 

operational boundary for the usage of compressors. Such a 

conservative trade-off unduly restricts the capability of engine. 

Various control methods have been recently proposed to 

allow compressors to operate safely beyond the surge line and 

thus enhance system efficiency (e.g., [6]-[13]). It is known 

that the unstable portion of the compressor's axisymmetric 

characteristic is hard to measure and the associated system 

uncertainties are inevitable in practical applications [6]-[7]. 

Robust control schemes had been applied to deal with such 

uncertainties by assuming the axisymmetric characteristic to 

be a specific cubic function [10]-[11]. 

In this paper, we will extend the results of [5] to focus on 

the study of surge behaviour by using the same model without 

considering the dynamics of stall wave. A preliminary result of 

this study had been presented in [16] via extensive computer 

simulations and numerical continuation code AUTO [14]-[15] 

for  the axial flow compressor dynamics with respect to the 

variations of both parameters  and .B  Phase portraits were 

also constructed in [16] by simulation to illustrate the 

distinctly-different dynamical behaviours associated with each 

regime on system parameter space. Instead of using numerical 

approach only as that in [16], in this study we focus on both of 

the local stability analysis and local bifurcation analysis for the 

compression systems via system linearization and bifurcation 

theory by treating   as system parameter. The numerical 

continuation and bifurcation analysis package AUTO [14]-[15] 

will also be employed to evaluate the systems dynamical 

behavior with respect to the variation of the so-called 

“B-parameter” [3] and the value of the throttle setting for 

justifying the analytical results.  

The paper is organized as follows. In Section II, we first 

recall the Andronov-Hopf bifurcation theorem which will then 

be used in Section III to derive the conditions for the 

occurrence of surge behavior. A brief review of the system 

models for compressor dynamics and analytical results for the 

study of rotating stall are also given. It is followed by the 
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analysis of local stability and possible bifurcation of a reduced 

version of Moore and Greitzer’s model via system 

linearization scheme and bifurcation theorem. The linkage 

between local bifurcation and surge behavior in compressor 

will be discussed in Section IV by using numerical approach. 

Finally, Section V gives the main conclusions. 

 

Notation: 

A    amplitude of the first angular mode of rotating stallwave; 

mC nondimensional compressor mass flow rate; 

P nondimensional plenum pressure rise; 

    angle along circumference; 

    a geometry-related constant; 

W   semi-width of cubic characteristic 

ssC  nondimensional axisymmetric compressor characteristic; 

F    inverse function of nondimensional throttle pressure rise; 

B    Greitzer B parameter, proportional to rotor speed and 

plenum volume; 

     control parameter of throttle function; 

II. PRELIMINARIES 

In this section, we will briefly review basic concepts of 

Andronov-Hopf bifurcation theorem and the mathematical 

model of axial flow compressor dynamics which will then be 

used in the sequel. 

A. Andronov-Hopf Bifurcation 

First, we recall the results of Andronov-Hopf bifurcation 

theorem from (e.g., [17]) as follows. 

Consider one-parameter families of nonlinear ordinary 

differential equations as given by 

( , ),x f x                                                            (1) 

where ,  nx R R   and f is a smooth function. Assume 

( , ) (0,0)x    is an equilibrium point of system (1). The 

Taylor series expansion of Eq. (1) with respect to both the 

state variable x and the bifurcation parameter  at the 

equilibrium point ( , ) (0,0)x    can then be obtained as given 

by 

0 0 0 1 1 1

2
2 2 2

( , ) ( , , ) + ( ( , ) ( , , ) )

       + ( ( , ) ( , , ) )
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     
 

(2) 
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Q x x D f x C x x x D f x
k k 

   

denote the bi-linear and tri-linear parts of ( , ),f x  respectively, 

0 (0,0)xL D f is the Jacobian matrix and  
1

0,0 .
!

kk x
L D f

k 
 

Suppose the Jacobian matrix 
0L possess a pair of pure 

imaginary eigenvalues .ci Denote l and r the corresponding 

left and right eigenvectors of 
0L  for the eigenvalue .ci  Here, 

for the simplification of calculation, the first component of r is 

set to 1 and the left eigenvector l is chosen so that 1.l r  We 

then have the following result from [17]. 

 

Lemma 1. System (1) will exhibit Andronov-Hopf bifurcation 

at the equilibrium point ( , ) (0,0)x    if (i) the Jacobian 

matrix 
0L  possess a pair of pure imaginary eigenvalues 

ci and (ii) 
1{ } 0.e lL r  Here, {}e  denotes the real part of 

the value. Moreover, the induced periodic solutions emerging 

from the equilibrium point (or the so-called “Andronov-Hopf 

bifurcation point”) is orbitally asymptotically stable (resp. 

unstable) if 2 0   (resp. if 2 0  ), where 

     2 0 0 0

3
2 2 , , , ,

4
e lQ r a l Q r b C r r r
  

     
  

 

with a and b satisfying the following two relations: 

 0 0

1
,

2
L a Q r r   

and 

   0 0

1
2 ,

2
ci I L b Q r r    

Here, bar denotes the complex conjugate. 

B. Axial Flow Compressor Dynamics 

Conceptually, a compression system is mainly consisted of 

inlet duct, compressor, exit duct, plenum, and throttle. A 

third-order ordinary differential equation model was proposed 

by Moore and Greitzer in 1986 [1] to capture the most 

essential features of compressor dynamics. To adopt the 

notations of Liaw and Abed [5], the proposed model in [1] can 

be represented as 

2

0
(  sinθ) sin  d ,

t
ss C

dA
C m WA

d W


 


                  (3) 

2

0

1
(  sin ) d ,

t 2

C
ss C

dm
P C m WA

d


 


                      (4) 

2

1
{ ( , )}.   

t 4
C

d P
m F P

d B



                                           (5) 

In the system dynamics given in (3)-(5) above, Eq. (4) is 

obtained from momentum balance and implies that the 

acceleration of the fluid in the inlet ducts is proportional to the 

difference between the pressure-rise across the compressor 

and the pressure rise in the plenum. The variable of integration 

  represents the angular displacement from a reference 

stationary with the first harmonic mode of the stall wave. In 

addition, Eq. (3) governs the rate of the amplitude ( )A t and 

Eq. (5) determines the changing rate of the plenum pressure. 

The inverse function of nondimensional throttle pressure rise 

is usually taken as 

            1/2( , ) ( ) .F P P                                              (6) 

It is known that the axisymmetric compressor characteristic 

)(ss C characterizes the steady pressure rise across the 

compressor and is often an S-shaped function (e.g., a cubic 

polynomial in [4]-[5]). An example is depicted in Fig. 1.  

Assume ( )SSC   is a smooth function. We can then solve for 

the equilibrium points of  system (3)-(5). It is not difficult to 

find that 0A  results in 
dt

dA =0 in (3). Denote 

),,0( 000 Pmx C    as an equilibrium point for the system 

(3)-(5). It is observed from Eqs. (4)-(5) that we will have 
0 0( )ss CP C m  and  0 0 0( , )Cm F P  for 0A with a 

given 0.   That means system equilibrium will be at the 

intersection point of the throttle line and the compressor 

characteristic for 0.A Note that, there may have 

equilibrium points of system (3)-(5) for 0,A  which 

corresponds to the so-called “stall behavior.” To adopt the 
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results from [5], it is observed in Fig. 1 that the throttle line 

intersects the compressor characteristic at a unique point 

while the throttle is widely open (i.e., the value of system 

parameter  is large). On the other hand, the equilibrium mass 

flow will decrease while the value of   is getting smaller. As 

depicted in Fig. 1, a dot-line stands for unstable system 

equilibria while solid line stands for stable ones. The 

conditions for the local stability and the existence for the 

occurrence of stall (i.e., 0)A had been obtained in [5] as 

recalled below. 

Lemma 2. Suppose F is a strictly increasing function in each 

of its two variables. Then the equilibrium point 0x  of system 

(3)-(5) is asymptotically stable if 0( ( )) 0ss CC m   , while it is 

unstable for 0( ( )) 0ss CC m   . 

Lemma 3. Suppose F is a strictly increasing function in each 

of its two variables with 0( ( )) 0ss CC m   and 

" 0( ( )) 0.ss CC m   Then the system (3)-(5) will exhibit a 

pitchfork stationary bifurcation at the equilibrium point 0x  

with respect to small variation of  . 

Note that, the stability conditions for the bifurcated solutions 

were obtained in [5] while a quadratic type control law was 

also proposed to prevent the appearance of stall in compressor 

dynamics. 

III. DYNAMICAL ANALYSIS 

In this paper, we will extend the results of [5] to focus on 

the study of surge behaviour by using the same model as 

presented in above Eqs. (3)-(5) without considering the 

dynamics of stall wave. A preliminary result of this study was 

presented in [16] by using extensive computer simulations and 

numerical continuation code AUTO [14]-[15] for  the axial 

flow compressor dynamics with respect to the variations of 

both parameters  and .B Instead of using numerical 

approach only as those in [16], in the following we focus on 

both of the local stability analysis and bifurcation analysis for 

the compression systems via bifurcation theory by treating   

as system parameters. Details are given below. 

A. Local Stability Analysis 

It is known that the so-called “surge behaviour” is a 

dynamic instability, which occurs when the compressor feeds 

more mechanical energy than the rest of the system can 

dissipate. That results in an oscillatory disturbance growing 

exponentially until it is limited by nonlinearity effects and 

becomes a limit cycle [17]. 

As discussed in [5], the operating points lying on both 

normal un-stalled zone and pre-stall zone as depicted solid 

curve of ( )ssC  in Fig. 1 will be always stable. That leads to the 

fact that the surge behavior will only appear at the operating 

point which is on the unstable portion of ( ).ssC   It is observed 

from Eq. (3) that A=0 is an invariant manifold for system 

(3)-(5). Thus, Eqs. (3)-(5) can then be reduced as a 

two-dimensional system for the study of surge behaviour as 

given below (with A=0): 

     ( ) ,
t

C
ss C

dm
C m P

d
                                                         (7) 

2

1
{ ( , )}.

t 4
C

d P
m F P

d B



                                            (8) 

First, we study the local stability of system (7)-(8). Let 

 0 0 0,
T

cx m P  be an equilibrium point of system (7)-(8) 

at 0  with 0 0( )ss CP C m  and  0 0 0( , ) .Cm F P   

Denote  1 2,
T

x x x with
0

1 c cx m m  and
0

2 .x P P    

The linearization of system (7)-(8) at the equilibrium 0x gives 

0 ,x L x                                                           (9)                                                                             

with 

 

0

0 0 0

2 2

( ) 1

 .1 1
,

4 4

ss CC m

L
F P

B B


  
 


   
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            (10)                   

Here,  0 0,F P  denotes the slope of the throttle line at 

T
C Pm ),( 00  and 0( )ss CC m is the slope of the compressor 

curve at 0 0( , ).TCm P  

The characteristic equation of the linearized model (9) is 

obtained as 

2 0 0 0

2

0 0 0

2

1
{ '( , ) ( )}

4

1
{1 '( , ) ( )} 0.

4

SS C

SS C

F P C m
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F P C m
B

  



  
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(11)                                                                        

Suppose B >0 and F is a strictly increasing function, i.e., 

 0 0, 0F P   . Then from the Routh-Hurwitz criterion, we 

have the following stability results at T
C Pm ),( 00  . 

Lemma 4. The equilibrium point  0 0 0,
T

cx m P  of system 

(7)-(8) is asymptotically stable (resp. unstable) if 

     0 0 0 0 0

2

1
1/ , , ,

4
ss cC m min F P F P

B
 

 
     

 
 (resp. 

if      0 0 0 0 0

2

1
1/ , , , ).

4
ss cC m min F P F P

B
 

 
     

 
 

B. Local Bifurcation 

From Eq. (11), system (7)-(8) renders to the critical system 

if the real part of either of two eigenvalues equals to zero. 

From bifurcation theory [17], we know that bifurcation may 

occur at which the parameter-dependent system becomes 

critical. A particular bifurcation sometimes is associated with 

surge, for instance, the Andronov-Hopf bifurcation, of which 

a periodic solution emerges from an equilibrium point as 

system parameters varying. The existence conditions for the 

appearance of Andronov-Hopf bifurcation theorem as recalled 

in Section II are that a pair of eigenvalues of the system 

linearization will cross the imaginary axis transversely at a 

critical value of the parameter. It is observed from Lemma 4 

that the key parameter in this model for determining the nature 

of post-instability compressor behavior (surge) is the value of 

B-parameter. 

From the characteristic equation as in (11), we find that the 

linearization of system (7)-(8) has a pair of pure imaginary 
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eigenvalues if  0 0 01/ , ( ) 0SS CF P C m   & with the value of  

   0 0 0(: ) , / 4 .H ss cB B F P C m    &  This implies that an 

Andronov-Hopf bifurcation may occur from the equilibrium 

point 0x for some value of 0.   To analyze such a 

possibility, we will employ the result recalled in Lemma 1 as 

given above. That result can help to derive the conditions for 

the existence and stability of an Andronov- Hopf bifurcation 

from the nominal system equilibrium.         

Let 0x be the equilibrium point at which the linearization of 

system (7)-(8) has a pair of pure imaginary eigenvalues 

ci for some 0.   The Taylor series expansion of system 

(7)-(8) for ( , )x  near 0 0( , )x   is given by 

   0
0 0 0 1( , ) , ,x L x Q x x C x x x L x              (12) 

Here, 0L  is as in (10) and 
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where  0 0
1 ,

F
P 




 


and  
2

0 0
2 , .

F
P

P
 




 
 

 

After some algebraic derivation, the left and right 

eigenvectors of 0L  with eigenvalue ci are chosen as 

 0
1 1

,
2 2 2

ss c

c c

C m
l i i

 
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  
 
 

and   01,  .
T

ss c cr C m i   

Here,    0 0 01
1 , .

2
c ss cF P C m

B
      To check the 

transversality condition 
1{ } 0e lL r  as recalled in Lemma 1, 

we have 

 
 

 
0

0 0

1 1 2 1 22 2

1 1 1
{ } { }

2 4 2 4

ss c

ss c ss c
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B B
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


      

                                                                                          

(16)                                                                                               

From Lemma 1, the property of Andronov-Hopf 

bifurcation can be characterized by the bifurcation coefficient 

2 as: (i) 2 0,  then the system has supercritical 

Andronov-Hopf bifurcation which implies the bifurcated 

oscillation is stable; and (ii) 2 0,   the system has subcritical 

Andronov-Hopf bifurcation which implies the bifurcated 

oscillation is unstable.  

After some calculation, we have a and b from Lemma 1 as 

1

2

1

4

a
a

a

 
  

  
                                                    (17) 

and 
 

11 12

21 22

1
,1

3
4

c

c

b b i

b
b b i





 
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  
 

                                                  (18) 

where 

   0 0 01 , ,ss cF P C m                                                          (19) 

     0 0 0 0 0
1 2

1
, , ,

4
ss ca F P C m F P

B
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4
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B

B C m C m
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 

        (22) 

     0 0 0 2 0
12

1
, 2 ,

2
ss c ss cb F P C m B C m                            (23) 
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0 0 0 0 0
21 2

5
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4
ss c ss c ss cb F P C m C m C m
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(24) 

    
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0 0 0
22 2

1
, {6 }.

2
ss cb F P C m
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The bifurcation coefficient 2 for system (7)-(8) is then 

obtained from Lemma 1 as below: 

       

     

2 2
0 0 0 0 0

2 4

0 0 0 0

4

1 1
{ , ,

8 16

1 1
         } , .

8128

ss c

ss c ss c

F P C m F P
B

C m F P C m
B

  



      


    

 

(26) 

To conclude the discussion above, we have the next result. 

Theorem 1. Assume  0 0 01/ , ( ) 0.SS CF P C m   & Then 

system (7)-(8) will exhibits Andronov-Hopf bifurcation at the 

equilibrium point T
C Pm ),( 00  if  0

1 22

1

4
ss cC m

B
   and 

   0 0 0, / 4 .ss cB F P C m   &  Moreover, the bifurcated 

periodic solution is stable (resp. unstable) if 2 0   (resp. if 

2 0  ), where 2 is given in (26). 

 

IV. ILLUSTRATIVE EXAMPLE 

In the following, we will adopt the cubic model from [6] as 

given in (12) below for numerical analysis to verify the local 

results of Lemma 4 and Theorem 1. 

3( ) 1.56 1.5( 1) 0.5( 1)ss C C CC m m m     .                  (27) 

As discussed in Section II, the Moore and Greitzer’s model 

[1] is mainly used to describe the dynamics of rotating stall. As 

recalled in Lemma 2, the linear stability of the axisymmetric 

equilibrium is stable (resp. unstable) for  0( ( )) 0ss CC m    

(resp. 0( ( )) 0).ss CC m    From nonlinear system point of view, 

however, the domain of attraction for stable system 

equilibrium may vary as the value of system parameters  and 

.B change. When the domain of attraction becomes finite, 

shrinks and disappears, emergences of multi-equilibria and/or 

limit-cycle type of oscillations may occur. In the following, the 



 

                                                                                  International Journal of Engineering and Applied Sciences (IJEAS) 

 ISSN: 2394-3661, Volume-8, Issue-12, December 2021  

                                                                                              30                                                                       www.ijeas.org 

numerical analysis tool AUTO [15] is employed to unveil a 

series of possible nonlinear phenomena.  

As presented in [5], the whole operating regime of the 

compression system (3)-(5) can be divided into three regimes 

as depicted in Fig. 1 via the different setting value of the 

throttle. They are: (i) the un-stalled normal zone for ,s  (ii) 

the pre-stall zone for ,s c    and (iii) the stall zone for 

,c  of which 1.25c   and 1.463.s    Two-parameter 

bifurcation diagram for the system (7)-(8) is obtained by using 

code AUTO as given in Fig. 2. In that figure, yellow-line 

( 1.25)  and pink-line ( 1.463)  stand for the throttle 

values which separate the operational regime of compressor 

into three zones as shown in Fig. 1. In addition, blue-line 

stands for Andronov-Hopf bifurcation points for the system 

(7)-(8). Detailed discussions of system dynamics in each of 

three major zones are given as follows. 

First, we consider the dynamical behavior in the un-stalled 

normal zone. As depicted in Fig. 2, no bifurcation is found in 

that region. A typical time response is shown in Fig. 3 for the 

setting value of 1.6  and 0.5,B  which denotes the point 

A in Fig. 2. It is clear that the equilibrium point for both of 

two-dimensional system (7)-(8) and third-order system (3)-(5) 

are stable. In Fig. 3, the pink dotted-dashed line denotes the 

time response for the third-order system (3)-(5) with initial 

0.5,A  while the blue dotted-dashed line denotes the time 

response for the two-dimensional system (7)-(8) with initial 

0,A  respectively. Note that, the definitions for the two time 

response curves will also be applied to the numerical 

simulations presented below.  

Next, we consider the case of which the equilibrium point 

lying on the pre-stall zone with 1.3  . Time responses for 

both of small and large values for B-parameter are obtained in 

Figs. 4-7. Here, we choose 0.5B  and 2B  denoted as 

points B and C in Fig. 2 for the numerical study. Similar 

scenarios as those in the un-stalled normal zone are observed 

in Figs. 4-7 to show the stability of the high pressure 

equilibrium point. The main difference between the dynamical 

behaviors of two system models is that the equilibrium lying 

on the pre-stall zone is not a unique one for the third-order 

system (3)-(5). It is clear to see in Figs. 5 and 7 that 

trajectories for 0.5A with system initials close to low 

pressure equilibrium point will go to the low pressure 

equilibrium point instead of the high pressure equilibrium 

point. In addition, as depicted in Fig. 6 that both of time 

responses for the system (7)-(8) and the third-order system 

(3)-(5) will pass through a short period of deep-surge alike 

behavior and then approach the high pressure equilibrium 

point.  

Based on the numerical results presented above, we can 

conclude that no surge behavior is observed for the 

compressor dynamics with equilibrium point lying on either 

un-stalled normal zone or pre-stall zone.  

Now, we consider the case of which the equilibrium point 

lying on the stall zone with 1.13.  Time responses for four 

different values for B-parameter are obtained in Figs. 8-11. 

Here, we choose 0.2,  0.3942,  0.5B  and 1.5 denoted as four 

points D, E, F and G in Fig. 2 for the numerical study. As 

derived in Section III, the Andronov-Hopf bifurcation might 

appear while the equilibrium point lies on the positive slope of 

the axisymmetric compressor characteristic, i.e., 
0( ) 0,ss CC m   and the conditions of Theorem 1 hold. As 

shown in Figs. 8-11, we have different scenarios for time 

response as the value of B-parameter changes. Detailed are 

summarized as follows: 

(i)     When the value of B-parameter is small, e.g., 0.2,B    

no Andronov-Hopf bifurcation will occur. As shown in 

Fig. 8, the transients settle on the stable low pressure 

stalled equilibrium for system (3)-(5) and the high 

pressure equilibrium point for (7)-(8) with initials 

0.5A and 0,A  respectively. 

(ii)  When the value of B-parameter is increased to a 

moderate value e.g., 0.3492,B   as depicted in Fig. 9 

the system (7)-(8) exhibits Andronov-Hopf bifurcation 

for the initial with  0A and the transient with 

0.5A settles on the stable low pressure stalled 

equilibrium for system (3)-(5), respectively. To check 

the conditions given in Theorem 1 with 1.13,  we 

have the equilibrium point for system (7)-(8) as  
0 0( , ) (1.7852,  2.4957).Cm P &  We then have the first 

derivatives  0 0, 0.3576,F P     0 0.5753ss cC m &   

with    0 0 0, / 4 0.3942.ss cB F P C m   & The 

so-called “transversality condition” for the bifurcation is 

calculated as  0

1 22

1
4.23 0

4
ss cC m

B
      , while the 

bifurcation coefficient is obtained as 2 0.0778 0.     

Numerical simulation depicted in Fig. 9 agrees with the 

results implied by Theorem 1. 

(iii) As the value of B-parameter increases a little bit, say, 

0.5,B  as depicted in Fig. 10 the amplitude of 

oscillation for the system (7)-(8) becomes larger to form 

the so-called “surge” behavior. However, the transient 

with 0.5A still settles on a stable low pressure stalled 

equilibrium for system (3)-(5). 

(iv) As the value of B-parameter becomes larger, say, 

1.5,B   the amplitude of oscillation for the system 

(7)-(8) eventually forms the so-called “deep-surge” as 

shown in Fig. 12. It is interesting to note that the 

transient with 0.5A  for system (3)-(5) will also go to 

the deep-surge instead of settling on the stable low 

pressure stalled equilibrium. 

 

V.  CONCLUSIONS 

 

In this paper, we have studied the local stability and local 

bifurcations for the reduced second-order system abstracted 

from Moore and Greitzer’s third-order model.  The stability 

conditions of system equilibrium are obtained by system 

linearization, while the existence conditions for the 

Andronov-Hopf bifurcation are derived via bifurcation 

theorem. Numerical simulations are obtained to verify the 

analytical results. It is concluded from those simulations that 

no surge behavior is observed for the compressor dynamics 
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with equilibrium point lying on either un-stalled normal zone 

or pre-stall zone. However, the deep-surge is found to occur 

on both two-dimensional reduced system and the original 

third-order Moore-Greitzer’s model for the system 

equilibrium lying on the stall zone with large value of 

B-parameter. The analytical results and numerical simulations 

presented in this paper might provide an insight of the axial 

flow compression systems, which can give a guide in the 

control design for practical applications. 
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      Fig. 1. A cubic axial flow compressor model 

 

 
 

Fig. 2. Two-parameter bifurcation diagram of the 

reduced Moore and Greitzer’s model 

 

 
 

Fig. 3. Time response of P vs. Cm in the  

normal un-stalled zone 
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Fig. 4. Time response of P vs. Cm in the pre-stall zone for small  

           B-value with initial close to high pressure equilibrium point  

 

 

Fig. 5. Time response of P vs. Cm in the pre-stall zone for small  

         B-value with initial close to low pressure equilibrium point  

 

 
Fig. 6. Time response of P vs. Cm in the pre-stall zone for large  

           B-value with initial close to high pressure equilibrium point 

 

 
Fig. 7. Time response of P vs. Cm in the pre-stall zone for large  

          B-value with initial close to low pressure equilibrium point  

 

 
Fig. 8. Time response of P vs. Cm in the stall  

zone for small B-value 

 

 
Fig. 9. Time response of P vs. Cm in the stall zone for  

      medium B-value (at Andronov-Hopf bifurcation point) 
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Fig. 10. Time response of P vs. Cm in the stall 

zone for medium B-value (surge behavior) 

 

 
Fig. 11. Time response of P vs. Cm in the stall 

zone for large B-value (deep surge) 
 

 


