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A Nonlinear Quantum Walk
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Abstract: In this paper, we consider a nonline quantum
walk. Among others, we show that the nonlinear quantum
walk has the same probability distribution as its linear
counterpart.
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I. INTRODUCTION

The concept of quantum was first proposed by Max
Planck at the beginning of the twentieth century, and
has drawn great attention since then. In recent dec-
ades, quantum information theory and technology
have been developed rapidly. Especially in 1993,
Aharonov at al. introduced quantum walks, which
are quantum analogs of classical random walks.
Quantum walks can play an important role in the
theory of quantum field, which is an important cor-
nerstone of quantum information theory and tech-
nology. Quantum walks are also widely used in
quantum cryptography, quantum computing and
quantum algorithms.

In 2007, Navarrete-Benlloch et al. proposed a non-
linear quantum walk for the first time in [3]. The
nonlinear Dirac equation is discussed in [1,8] via the
evolution process of a nonlinear quantum walk.
Similarly, the nonlinear Schrodinger equation is also
investigated in [6] with the evolution process of a
nonlinear quantum walk. In [2], the weak limit the-
ory of a nonlinear quantum walk is developed by
using the scattering method and the limit distribution
is obtained. In this paper, we consider a nonlinear
quantum walk of the form

—if (Wn(x+1))

W, ) =e " R, (e )+
e,‘f(\l’n(x—l))Qolen (x - 1),XEZ ,l’lEo s

Where £, Qo are the coin matrices and f is a re-

al-valued function. Among others, we will show that
the above nonlinear quantum walk has the same
probability distribution as its linear counterpart.
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II. PRELIMINARIES

We first fix some notions and notation commonly
used in this paper. As usual, [*(Z,C’) represents

the space of square summable C ’-valued functions
defined on Z , namely

F(Z,C7)={®:Z—~C"| 2\ D(x) [ < o},
XEZ
Where || is the norm in C’. By convention,
M (2,C)denotes the set of two-by-two complex ma-

trices, while U(2) is the set of two-by-two unitary
matrices.

Lemma 2.1:[2] For Q(x)=( 0
c(x) d(x)

) » P)=

(a(ox) b(Ox)), and  P(x)+Q(x)EU(2) . Then

there exists
A:(Z,C°)—=1*(Z,C?) satisfys

[HAD](x) = P(x + )P(x +1) + O(x = )P (x 1), (1.1)
where xEZ, ®E(Z,C?).
Proof. Define f, :Z—~C ® as

isometric linear operator

];‘I’ =P(x+1)P(x+D)+QO(x-1)P(x-1),xEZ.(1.2)

€cause

;\fm(ﬂ i

= ;\ P(x+D)®(x+1)+ O(x - 1)P(x-1)?

= Zz <P(x+ D@ (x +1) + O(x ~NP(x = 1), P(x + DD(x + 1) + O(x - DD(x~1) > ,

= Zz <P(x+ DO(x +1), P(x+ DD(x +1) >, +Zz <P(x+)®(x +1),0(x - D (x 1) >,

+; <O(x-DP(x-1), P(x+)P(x +1) >, +; <O(x-DP(x-1),0(x-D)P(x-1) >,

= ; IP(x+D)D(x+1) +; <P(x+1), P’ (x + DO(x - DD(x=1) >,
+; <@(x-1),0" (x-DPx+DP(x+1) >, +g O -)P(x-1
- Zz |P(x)D(x) [ +Zz <®(x+1), P (x + DO -DP(x-1) >

+; <D(x-1),0 (x-DP(x +DD(x+1) > +2 OX)P(x) .
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For P(x)= a(x) b(x) Q0= 0 0 ’
0 0 c(x) d(x)

and P(x)+Q(x)€U(2). Itis easy to get
. 0 0y .
P (x+D)O(x-1)= (0 O),Q(X—I)P(x+1)=

0 0
. So we have
o o)

Zi' Jo()[ = ; P)P(x) [ +2 O(x)P(x)[*
= Y P)®(x) + Q(x)@(x) [
= ; | UQ)P(x) [

= ;@(x) 2.(1.3)

Because PE[*(Z,C?), we get E\fd)(x) | < o,
XEZ

Suppose AP = £, and then we can get (1.1).

Furthermore,

(ZC)

Zz|;4c1>(x)| =PADP,

Therefore, #®E(Z,C?). According to the equa-
tion (1.3), The operator »# is isometry. For any

', ®°€*(Z,C%). xEZL, k,k, E° .

(A" + ke, ®7)](x)

= P(x + )k ®' + k,@*)(x +1) + O(x D)k ®' + k,d*)(x 1)

= k@' (x+ DP(x+ )+ k,@° (x + DP(x + 1) + k@' (x - DO(x = 1) + k,@* (x = 1)Q(x - 1)
= k@' (x+ DP(x + 1) + @' (x = DO(x = 1) + b, @ (x + D P(x + 1) + k,®* (x = 1)O(x - 1)
= kD' |(x) + kD7 ] (x)

In conclusion, the operator 4 is isometric linear.

10

0
Proposition 2.2: When Qo = ( 4

0
-

b
(?) O)’ and F, +Q €U(2). Then there

exists unitary operator #:/*(Z,C*)—[*(Z,C?)
satisfying

AP)(x) = BP(x+ 1)+ 0, P(x-1),xEC¢.
Proof. According to lemma (2.1) and the above

proof. Forany x€Z, ®€/[*(Z,C?). We have
AP)(x) = BP(x+1)+ Q,P(x-1).

Asaresult, P +(Q =,#.Since we have

F +0Q €U(2), A is unitary operator.

Definition 2.3: [1,2] The evolution equation of line-
ar quantum walk driven by unitary operator # is

AP (x) = RP(x+ 1)+ QP(x-1),xE¢ .(1.4)
Among them, the linear quantum walk has the fol-
lowing characteristics:

(1)I°(Z,C?) is state space, and states are repre-

sented by a unit vector in /°(Z,C?).

(2) states are subject to the following evolution
equation

(x) = AP (x),nEe ,® (x)EIF(Z,C?).

n+l

Where @ (x) represents the state at x at time. In

particular, @, (x)is called initial state;

(3) The probability of finding a walker at time n at
xis PO (0P .

Corollary 2.4: According to the asymmetry of the
operator s#,then

PO P

n+l

PO, P, , . =L PO P, . (5

*(z.,c? ) ?(z,c?)

Especially, when P®; l? @.ch =1,
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PO P =L =PQ, P

n+l

=P® P

?(2,c?) *(z.,c%) 1*(z.,c? )

ITII. MAIN RESULTS

Theorem 3.1: Let f be a function from C *to

0 0 a b )
0, = and P = satisfy
c d 0 0

P +Q{ €U(2) .Then there exists a mapping

o

A, I(Z2,C°)—1(Z,C%) as
ﬁ‘f‘P](x)
=" PW(x+1)+e O,¥(x-1),(2.1)

where xE¢,WeF(Z,C7) , and

P4, ¥ P=PW P.

proof. If WE[*(Z,C?), let function F: Z~>C”>

be

F(x)=e  PWx+l)+e  OW(x-1),xEc.

if (W(x-1)

Then, we have

PFP
12(z.c2)
-3 Pe " RW(x+)+e T QW(x - P,
xXeE¢
=< e P+ OW(x-1),
Xt

if (W(x+1)) if (W(

e RWxe e T QW(x-1) 52,

-3 Pe """ PW(x+1) sz
xe¢

+E<e""'”‘ Wix+l)e R OW(x-1)>2,
xXEC

+E <" 1))‘P(x 1),e e +l>)QO*PO‘I‘()C +1) >i2

Xe¢

£y P OW(x-1) P, (2.2)
Xt

) 0 0 a b )
Since Q, = , P = Jt is easy to
c d 0O O

get
P()*Qo: QO*P():O'(2’3)

Moreover, for any X&(¢ , we have
if (W (x-1)) —if (W(x+1)) _

le I=le

Therefore,

11

E Pef'/(‘v(“”)l)ollj(x + 1) l:fz = 2 Pljolp(x + 1) l:iz (24)
xe¢ =

Epe’”‘ "QW(x-1)P, = S POW(x-1)F. (2.5)

xE¢

Combine(2.3), (2.4), and (2.5),we can get
PFP

2z.c?)

=P BB+ B, + 3P QW (x-1) P,
- § PRU(x+DE, + PQO‘;ezx )P,

- § PR¥(N)F, +Y, ?QO‘I‘(X) P,

- § PPW(x)+ QO‘;ezx) P,

PUP  (2.6)

2z.,c?)

And for any P(x)EI*(Z,C*), PUP <o,

12(z.c%)

we can get

PFP <.

2z.c?)

Then, F(x)E/[*(Z,C?).For the defined mapping

A, define

A ,=F, WEI(Z,C*).27)
Obviously,

AW(x)=F(x)=¢ g+1)+e‘”"’"""’Q0qf(x D),
where XE¢ ,pel? (Z C7).According to (2.6)

and (2.7), we can get
P# WP =PWP

2z.c?) 2(z.c?)

Theorem 3.2: The mapping 4 defined above is
nonlinear, for any lI’EZZ(Z,CZ), AW is a

unitary matrix.

Proof. Forany W' W?>€E/[*(Z,C?),
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[4, 9 1(x) +[4, %7 ](x)

—if (W (41

—e PW'(x+1)+e
0

i (v (x-1)

QW' (x-1)

0,%%(x-1).(2.8)

2 2
—if (W7 (x+1)) W (x-1))

+e PO‘IJ2 (x+ 1)+e'”
However,
[A4, (W' +%)](x)

~if (W () + w2 (x41) ~if (W (x4 w2 (141

) )
=e PW'(x+l)+e PW’ (x+1)

if (W (x=1)+w2 (x-1)

QW (x-1).(2.9)

if (W (x=1)+w2 (x-1))

+e QW' (x-1+e

It is obvious that (2.8) = (2.9). Then is A ,anon-

linear mapping. According to (2.1) and the definition
of Q, and P, forany WEI*(Z,C?)

(#,W) (#,W)

=(e R+e Q) B+e Q)

—if (W) if (W)

% ~if (W)
O))e F+e Q)
RO, +e  OF +0,0,

a b
For P = , we get
0 0

" a o0 o a? a-b
“Ab o) " \ba pp

if (W) *
=(e P +e

2if (W)

=R P +e

Similarly,

Since B, +Q €U(2), we get BB +0,0,=1.
Namely,

(#, W) (#,W)=1.
Similarly,

(#,P)(#,¥) =1
In conclusion, # W isa unitary matrix.
Definition 3.3: The evolution equation of nonlinear
quantum walk driven by # is

A (P, (x)

=if (W (x41)

=e 'PW (x+1)+e

if (W (x-1))

OV, (x-1),xE¢,nEe.

12

Among them, the nonlinear quantum walk has the
following characteristics:

(1)I°(Z,C?) is state space, and states are repre-

sented by a unit vectorin [*(Z,C"*);

(2) states are subject to the following evolution

equation

Y =AY nEe.

In particular, W o1s the initial state;

(3) The probability of finding a walker at time n at
xis P¥ (x)P ..

Proposition 3.4: In the evolution of nonlinear
quantum walk driven by # , we can get

PY P, =P‘Pnf;lz( =L =P‘I’0PZZZ(Z’CZ),nE-.(2.10)

n+l Z(Z,Cz) z,c?

proof. According to theorem 2.1, there have
P# ,WP=PWP. From the nonlinear quantum
walk evolution equation W =#¥ we get

PY P P¥ P, . .(211)

n+l 12(Z,C2)
where n&e . Especially, When n=0, we get

PY P -PY P

(Z.C%

2(Z.C%) P(z,C*) °

To sum up, we get (2.10).
Corollary 3.5: Let function g:x—° , when

u(x) =PW()P_PU()P, =1 then u is a

12(2,C?)
probability measure.

Theorem 3.6: When W (x)=® (x), P(x)=P,
O(x) = Q,,The probability distribution of nonlinear
quantum walk driven by # is the same as that of

linear quantum walk driven by 4.
Proof. When P(x)=F,, O(x)=0,, the linear

quantum walk evolution process driven by # is
/A, 1(x) = R, (x+1)+ @, (x-1),xE¢,nEe (2.12)

For any x€&¢ , it satisfies W (x)=® (x) when

n=0. Therefore,

Plpo (x) sz =P(Do (x) PC?z B

If n=k, we have
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W, (1) = 0, (1), P, () P, =PD, (x) P,
For W, (x),we get

k+1 (x)

~if (W (x+1) if (W (x-1)

=Pe PY (x+1)+e

=if (g (x+1))

=Pe BW, (x+1) lfz + Pe
=PRY, (x+1) lfz +POW, (x-1) Pczz

PR, (x+1)+ QW (x~1) P (2.13)
For ,(x), we have

P, (x) P,
=PFR® (x+1)+ Q@ (x-1) sz
=PF®, (x+1) PCZ2 +PO,®, (x-1) PCZ2
=PR® (x+1)+ Q@ (x-1) 1%2 (2.14)
When n=k, for any x&(¢ ,

W (x) =@, (x).

oW, (x-1)P,
if (Wi (x-1)
"0, (x-1)P,

Obviously,
W (x+) =D (x+1), ¥ (x=1)=D,(x-1).
Combine (2.13) and (2.14), we get

(B =PD,_ (x) P, (2.15)

In conclus1on smc!n is

PW (x)P2 =P® (x) Pzz,nE ,XEC.
Therefore the probab111ty dlStI‘lbuthl’l of noMmear

quantum walk driven by 4 is the same as that of

linear quantum walk driven by 4.
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