A Class of Marshall Type Maximal Inequalities for Conditional Demimartingales

Yali Lu, Decheng Feng, Xia Lin

Abstract — In this paper, we got a further studying of Marshall type inequalities. We obtained a class of Marshall type maximal inequalities for conditional demimartingales \(\{S_n, n>1\} \) by using conditional Hölder inequalities and some inequalities related to conditional demimartingales.

Keywords—Conditional Demimartingales; Marshall Type Inequalities; Maximal Inequalities

1. INTRODUCTION

In this paper, let \(\{S_n, n>1\} \) be a random variables sequence defined on \((\Omega,F,P)\). Denote \(S_0=0, I(A) \) is indicator function of set \(A, p>0, p\neq 1 \) and \(\frac{1}{p} + \frac{1}{q} = 1 \). Let \(\Lambda = \lim_{q \to 0} \max_{i \in \omega} S_i \geq \varepsilon \).

Definition 1 Let \(\{S_n, n>1\} \) be a random variables sequence on \(L^1(\Omega,F,P) \). If for all \(1 \leq i < j < \infty \), \(E[(S_j - S_i)f(S_1, \ldots, S_i)] > 0 \) for every componentwise nondecreasing function \(f \) where expectation is defined, then the sequence \(\{S_n, n>1\} \) is called a demimartingale. In addition, if assume \(f \) is nonnegative, then \(\{S_n, n>1\} \) is called a demisubmartingale.

The concept of demimartingale was introduced by Newman et al[1], after that many scholars got further studying about it and investigated some interesting results and applications[2-11].

For zero mean square integrable random variable \(X \), we have

\[
P(X \geq \varepsilon) \leq \frac{EX^2}{\varepsilon^2 + EX^2}, \forall \varepsilon > 0.
\]

\[
P\left(\max_{1 \leq n \leq m}(X_1 + X_2 + \cdots + X_k) \leq \sum_{k=1}^{n} \frac{EX^2}{\varepsilon^2 + \sum_{k=1}^{n} EX^2}, \forall \varepsilon > 0 \right)
\]

(1)

where \(EX_k = 0, E(X_k|X_1, X_2, \ldots, X_{k-1}) = 0 \) a.e., \(k > 2 \) and \(EX_k^2 < \infty, k > 1 \).

Under above condition, if assume

\[
S_n = \sum_{k=1}^{n} X_k
\]

then \(\{S_n, n>1\} \) would be a demimartingale. Mu et al[4] generalized inequality (1) under the condition of \(E|X_i|^p < \infty, i > 1 \) and \(p > 2 \), and got Marshall type inequality as following form

\[
P\left(\max_{1 \leq n \leq m} S_n \geq \varepsilon\right) \leq \frac{E|S_n|^p}{\alpha^{1-p} \varepsilon^p + E|S_n|^p}, \forall \varepsilon > 0
\]

where \(\alpha \) is maximum value of \(f \) for \(|X| \).

Prakasa Rao[14] defined conditional covariance of \(X \) and \(Y(F\text{-covariance}) \) as follow

\[
Cov^F = E^F((X - E^F X)(Y - E^F Y))
\]

where \(E^F Z \) is conditional expectation of random variable \(Z \) which has been given condition \(F \).

Christofides et al[12] introduced following definition.

Definition 2 Let \(\{S_n, n>1\} \) be a random variables
sequence on L^1(Ω,F,P), if for all 1 ≤ i < j < ∞,
\[E^F [(S_j - S_i) f(S_i, \ldots, S_j)] \geq 0 \text{ a.s.} \]
for every componentwise nondecreasing function f such that above expectation is defined, then \(\{S_n, n > 1\} \) is called a F-demimartingale. In addition, if assume f is nonnegative, then \(\{S_n, n > 1\} \) is called a F-demisubmartingale.

Inspired by literature[13], we extend Marshall type maximal inequalities for nonnegative demimartingales \(\{S_n, n > 1\} \) in literature [4] to the case of conditional demimartingales \(\{S_n, n > 1\} \).

II. MAXIMAL INEQUALITIES FOR CONDITIONAL DEMIMARTINGALES

Lemma 3[15] If \(E^F |X|^p < \infty \) a.s., \(E^F |Y|^p < \infty \) a.s., then
\[E^F |XY| \leq (E^F |X|^p)^{\frac{1}{p}} (E^F |Y|^q)^{\frac{1}{q}} \text{ a.s., } p > 1. \]
(2)
\[E^F |XY| \geq (E^F |X|^p)^{\frac{1}{p}} (E^F |Y|^q)^{\frac{1}{q}} \text{ a.s., } 0 < p < 1. \]
(3)

Lemma 4[12] Let \(\{S_n, n > 1\} \) be a F-demi(sub)martingale and \(g(\cdot) \) be a nonnegative nondecreasing convex function, then \(\{g(S_n), n > 1\} \) is a F-demi(sub)martingale.

Lemma 5[13] Let \(\{S_n, n > 1\} \) be a F-demi(sub)martingale, then for any F-measurable random variable \(\varepsilon > 0 \) a.s.
\[\varepsilon P^F (\max_{1 \leq k \leq n} S_k \geq \varepsilon) \leq E^F (S_n I(\max_{1 \leq k \leq n} S_k \geq \varepsilon)) \text{ a.s.} \]
(4)

Lemma 6 Let \(\{S_n, n > 1\} \) be a F-demi(sub)martingale and \(E^F S_1 \leq 0 \) a.s., assume there is a \(1 < p < 2 \), such that \(E^F |S_n|^p < \infty \) a.s. for all \(n > 1 \) established, then for every F-measurable random variable \(\varepsilon > 0 \) a.s. while \(P(\Lambda) \in [\frac{1}{2}, 1] \) a.s.
\[P^F (\Lambda)(1 - P^F (\Lambda))^q + (1 - P^F (\Lambda))P^F (\Lambda)^q \] \[\geq (E^F |S_n|^p)^{\frac{1}{p}} \varepsilon P^F (\Lambda) \]
a.s. Proof. Denote \(Y = I(\Lambda) \). By using conditional Hölder inequality (2) and lemma 5, we can get
\[(E^F |Y - E^F Y|^q)^{\frac{1}{q}} (E^F |S_n|^p)^{\frac{1}{p}} \]
\[\geq E^F [(Y - E^F Y)S_n] \geq E^F (YS_n) - E^F YE^F S_n \]
\[\geq E^F (I(\Lambda)S_n) \geq E^F (\varepsilon I(\Lambda)) = \varepsilon P^F (\Lambda) \]
a.s.

where \(P^F (\Lambda) \in [\frac{1}{2}, 1] \) a.s., thus the proposition is proved.

Theorem 7 Let \(\{S_n, n > 1\} \) be a F-demimartingale, \(E^F S_1 < 0 \). If there is a \(1 < p < 2 \), such that for all \(n > 1 \), have \(0 < E^F |S_n|^p < \infty \) a.s., then for every F-measurable random variable \(\varepsilon > 0 \) a.s. while \(P^F (\Lambda) \in [\frac{1}{2}, 1] \) a.s., we have
\[P^F (\Lambda) \leq \frac{1}{1 + M} \]
a.s.

where \(M \) is positive solution of following function,
\[x^q = (\beta - 1)x + \beta \quad x \in (0, +\infty). \]
(5)

where \(\beta = \frac{\varepsilon^q}{P^F (\Lambda)} \) a.s.

Proof. By lemma 6 we can get
\[[P^F (\Lambda)(1 - P^F (\Lambda))^q + (1 - P^F (\Lambda))P^F (\Lambda)^q] \geq \varepsilon P^F (\Lambda)^q \]
a.s. divide both side by \(P^F (\Lambda)^q \)
\[(1 - P^F (\Lambda))^q + (1 + P^F (\Lambda))\left(\frac{E^F |S_n|^p}{P^F (\Lambda)^q}\right) \geq \varepsilon \]
a.s.

let \(x_0 = \frac{1 - P^F (\Lambda)}{P^F (\Lambda)} \) a.s., \(\beta = \frac{\varepsilon^q}{P^F (\Lambda)^q} \) a.s., then
\[P^F (\Lambda) = \frac{1}{1 + x_0} \]
a.s.
\[P^F (\Lambda) x_0^g + 1 - P^F (\Lambda) \geq \beta \text{ a.s.} \]

then

\[\frac{x_0^g}{1 + x_0} + \frac{x_0}{1 + x_0} \geq \beta \text{ a.s.} \]

namely

\[x_0^g \geq (\beta - 1)x_0 + \beta \text{ a.s.} \]

(6)

Let \(g(x) = x^q - (\beta - 1)x_0 + \beta \), \(M \) is positive solution of equation (5). Since \(g''(x) = q(q - 1)x^{q - 2} > 0 \), \(x \in (0, +\infty) \), we can easily get \(g(x) \) is a convex function on interval \((0, +\infty) \), which mean for \(\forall x \in (0, M) \)

\[\frac{g(x) - g(0)}{x - 0} \leq \frac{g(M) - g(x)}{M - x} , \]

since \(g(0) = -\beta < 0 \) and \(g(M) = 0 \). Then for \(x \in (0, M) \) can get \(g(x) < 0 \), namely \(M \) is minimum value of equation (6).

This work was supported by the National Natural Science Foundation of China(Grant No. 11861057 and No. 11761064), Innovation Ability Promotion Project of Colleges and Universities in Gansu Province(Grant No. 2019A-003), Research Funding Project for Postgraduates in Northwest Normal University(Grant No. 2020KYZZ001113).

REFERENCES

Yali Lu, School of Mathematics and Statistics, Northwest Normal University, Lanzhou, China, Mobile 86-15002511178.

Decheng Feng, School of Mathematics and Statistics, Northwest Normal University, Lanzhou, China.

Xia Lin, School of Mathematics and Statistics, Northwest Normal University, Lanzhou, China.