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Abstract—We apply the principle of compression 

mapping to show existence and uniqueness of solutions for 

the classical Navier-Stokes equations in Sobolev-Gevrey 

space
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I. INTRODUCTION 

The 3D generalized Navier-Stokes system is give by: 

with Q is the bilinear operator defined as: 

 

where 

 

and 
, , ,

,

j m p n

k l
a are real numbers. 

The particular case of the above system is the Navier-Stokes 

system for incompressible fluid: 

   where 0   is the viscosity of the fluid, and 0  is real 

parameters.  ,u t x is the velocity field of fluid, 

 ,p p t x  denotes the unknow pressure of the fluid 

at the point   3,t x   , and   1 1 2 2 3 3
:u u u u u u u u        

, while     0 0 0 0

1 2 3
( ), x , xu u x u u  is a given initial velocity. 

If 
0u  is a quite regular, the divergence free condition 

determines the pressure p . Here 
t

  and 2

1
j

n

x

j

   are  

the partial derivative with respect to t  and the Laplacian with 

respect  to  1
, .

n
x x x  For simplicity, we will take =1 . 
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We are mainly interested in studying existence and 

uniqueness of solutions for the classical Navier-Stokes 

equations. Here we extend the results obtained in [1] to the 

case of homogeneous  Sobolev-Gevrey space. To define the 

spaces, for s , let us
 

denote by
 

3( )sH  the usual 

Sobolev spacs on
3

, with respective inner product 

( )
,

sH
 

3 , and ( )sH 3
 denote the usual homogeneous 

Sobolev spacs on
3

, with respective inner product 

( )
,

sH
 

3 . We denote the Fourier transform, as in [3] by 
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( )( ) exp( ) ( ) , ( , , )f ix f x dx         F

 
,
   

 

and its inverse by 

2

1 2

1 2 3
( )( ) (2 ) exp( ) ( ) , ( , ),f x ix f d x x x x       

3F
 
. 

The convolution product of a suitable pair of function f  
and 

g  on 
3

is given by 

2

3( )( ) ( ) ( ) ,f g x f x y g y dy x     

If 
1 2 3 1 2 3

( , , ), ( , , )f f f f g g g g  are two vector 

fields, we denote 
1 2 3

: ( , , )f g g f g f g f    

and 

1 2 3
div( ) : (div( ),div( ),div( ))f g g f g f g f  .  

The fractional Laplace operator 2( )
s

  , 0 2s  , is 

defined by  

 

We write 

1

2| |D   . 

Definition1.1 

For , 0, 1a s   and  
1

2D ,   The Sobolev-Gevery 

spaces  defined as follows: 

 

which is equipped with the norm 

 

and the associated inner product 

 

Analogously, the homogeneous Sobolev-Gevery spaces 

 is  

 

which is equipped with the norm 

 

and the associated inner product 
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Our main result is the following. 

Theorem.1.2 

 Let 0, 1s   .  If 
1

0 2

,a
u H


 such that 

0div 0,u   

then there exists a positive time T such that (1.1) has unique 

solution   4 1

,
0, ,
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
  which also belongs to 
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II. PRELIMINARIES 

Lemma.2.1
[5] 

 Let E  be a Banach space, B a continuous bilinear map 

from E E E  , and a positive real number such that 

1

4 B
  , with 

 

For any a  in the ball   in E , then there exists a 

unique  in  such that 

 

Lemma.2.2 
[3] 

Let ,  and , such that  

. Then there exists a constant , 

such that for all , we have 

 

. 

If   and , then exists a 

constant , such that 

. 

Lemma.2.3 

 Let  and . Let  be a bilinear form as defined in 

(1.1). Then, there exists a constant  such that for all 

 we have: 

. 

Proof  Thanks to the inequality (2.1), we get: 

 Lemma.2.4  

Let  be the solution in of the Cauchy problem 

 

with  and . Then 

 

Moreover, we have the following estimates: 

 

 

Proof   The first estimate is just the energy estimate.  
 

Let us take the inner product in  with u , we get 

 

Taking the 
1L  norm with respect to time and using Young’s 

inequality , we deduce the results. 

The proof of the second one is based around writing 

Duhamel's formula  in Fourier space, namely, 

 

The Cauchy-Schwartz inequality implies that: For any 

, we get 

 

Multiplying the obtained inequality by , we obtain 

Taking the  norm with respect to the frequency variable , 

we conclude that: 

Since, for almost all fixed , the map  is 

continuous over , the Lebesgue dominated convergence 

theorem ensures that Similary, we 

have: 

 

Taking the  norm with respect to time and using Young's 

inequality, we obtain: 

Taking the  norm with respect to the frequency variable , 

we obtain : 

 

Finally, the last inequality follows by interpolation: 

 

 and 

 

Taking the   norm with respect to time and using the 

inequalities (2.2) and (2.4) lead  to (2.3). 

III. PROOF OF THEOREM 1.1 

Proof   Let  be the solution to the heat equations. 

 

with the bilinear operators  defined as in (1.2) and 
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Thanks to Lemma 2.3, we have 

 

Thus, combining Duhamel's formula and the inequality (2.3), 

we have 
 

this implies: 
 

thanks to Minkowski's inequality, we have 

 

thus, if , we get 

 

According to Lemma 2.1, there exists a unique solution of 

(1.2) in the ball with center  and radius in the space 

 such that 

 

we now consider the case of a large initial data  

Let  such that 

 

Using the inequality (3.2) and defining 

 we get 

 

From which we can deduce that 

which yields 

 

Thus, if 

 

then we conclude the existence of a unique solution in the ball 

with center  and radius  in the space  

and we observe that if  is a solution of (1.2) in 

, then, by Lemma 2.3  belongs to 

 Hence, Lemma 2.4 implies that the solution  

belongs to  
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