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Abstract— Two dimensional Rayleigh-Bénard convection in a 

Boussinesq fluid is revisited using DTM-Padé approximation. 

The stationary and oscillatory  instability analysis is obtained 

using critical Rayleigh numbers. We observe that the  effect of   

increasing the rotational rate is to increase the critical wave  

number and  also the solutions are oscillating more in the 

horizontal direction as the rotational  rate is increased. We have 

analysed the  stability conditions to determine the type of 

instability at the onset of convection that were dependent on the 

value of the Taylor number and the Prandtl number.  

Asymptotic limits reveal that the flow would be comprised of 

columns of fluid aligned with the rotational axis since as the 

wave number increases the rotational rate also increases  and  

the critical wave length decreases  by setting the onset of 

convection in the form of tall thin columns. The flow equations 

are solved to obtain the  linearised solutions and Differential 

Transform Method is applied along with Padé approximation to 

yield solutions  without discretization and  linearization and 

results are displayed in the graphical forms. 

 

Index Terms— Rayleigh- Bénard  convection, vorticity, 

Differential Transform Method, DTM- Padé  approximation, 

Stability Analysis.  

I. INTRODUCTION 

  Two dimensional Rayleigh-Bénard convection in a 

Boussinesq fluid is the simplest possible system that exhibits 

convective instability. Moreover it contains the same basic 

physics as occurring in many geophysical and astrophysical 

systems, such as the interiors of the Earth and the Sun. We 

study this ubiquitous system with and without the effect of 

rotation, for stress free boundary conditions[1]. Variations are 

observed for a range of different values of the Rayleigh, 

Prandtl and Taylor numbers obtained during the process of 

computation. The rapid rotation of the Earth has a profound 

effect on the appearance of the convection and can be 

explained by the Taylor- Proudman theorem. This asserts that 

motion is uniform in the same direction of the axis of rotation 

(Taylor (1917), Taylor (1922) and Proudman(1916)). This 

leads to so-called Taylor columns[4].  
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The linear theory of Rayleigh- Bénard convection gives the 

critical value of the Rayleigh number at which convection 

onsets. when the analysis is conducted in terms of normal 

modes, this theory predicts either exponential growth or 

decay, and gives no further insight into the dynamics after the 

system has become unstable[2] and the  influence of the 

temperature boundary conditions at the sidewall on the heat 

transport in Rayleigh–Bénard (RB) convection  [3] gives the 

majority of the convective systems that are found in 

nature[30] are influenced by rotation, nearly all modern 

experiments on Rayleigh-Bénard convection incorporated in 

King et al[5,6,7]. 

   Diaz & Brevdo [8]  obtained  for the mixed convection of a 

Newtonian fluid in porous media  using numerical 

investigations of pattern formation in the classical 

Rayleigh-Bénard convection with cylindrical geometry in the 

regime of low Prandtl numbers and moderate aspect ratio and 

beyond the onset of convection, found straight and bent rolls 

as stable patterns[13,14] but Mixed convection [9,10,11] has 

localized instabilities. Numerical simulations of  rotating 

Rayleigh-Bénard convection.[16,17] for transition flow 

regimes in a rotating Rayleigh-Benard convection with 

rigorous upper limits on the vertical heat transport[19,20] in 

two dimensional Rayleigh-Bénard convection between 

stress-free isothermal boundaries are derived from the 

Boussinesq approximation[29]. Analytical solutions for both 

Newtonian and inelastic non-Newtonian fluids with slip 

boundary conditions are obtained[23].  By increasing the 

Rayleigh number as in [18] Prandtl and Rayleigh numbers 

dependences in Rayleigh–Bénard convection is evident in 

Roche et al [22,24] through conducting experiment in 

turbulent regimes where the majority of the heat is convected 

through the layer or cell[25] and pattern selection in 

viscoelastics fluids [26] 

The influences of geometry  and physical parameters 

(Prandtl number, Taylor Number)[21] significance by linear 

stability[27,28] analysis is focused in this paper. Further along 

with the understanding of instability mechanisms, the flow 

equations are solved using Differential Transform method and 

results are plotted using Graphs. 

II. GEOMETRY AND BOUNDARY CONDITIONS FOR 

THE FLOW WITH ROTATION 

The fluid can either be confined between two fixed walls, have 

its upper surface free to the air, or have both surfaces free. The 

last case is unrealistic, but will be the one considered below 

because it is the most easily handled analytically. 

     In either case(fixed wall or free surface) the temperature is 

held constant along each boundary to give an   thermal 

gradient-β.  
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      0
0T T z                                (2.1) 

                                                                                                                             

1 0
T T T d z d                               (2.2) 

  

The boundary condition on the velocity are as follows. At a 

fixed wall we have, 

                             0,           w 0u v                       (2.3) 

At a free surface it can be shown that, 

  
2 2 0(stress free boundary condition)w w z     (2.4)                     

 
We have, 

                           . 0u                                    (2.5)                             
1 2 2Pr Pr Pr

u
p Ra Z Ta Z u u

t



      

    
(2.6)                                                                                                                                                                                                               
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t


 


 


                                                   (2.7)  

 where   is the z -component of the fluid velocity. In order 

to eliminate the pressure term we begin by taking curl and 

double curl of equation  
2 2

1 2 2

2

( )
Pr Pr Pr

u w
Ra Z Ta u

t x





   
   

  
   (2.8) 

Velocity is given by   q  
 

 

 
Fig.1. Sketch of  the Rayleigh- Benard convection through rotation 

 

We take z-components of these equations, along with 

temperature equation, as the equations upon which we 

conduct our linear stability analysis. 

                                                  

1 2 2Pr Pr
w

Ta u
t t
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      
                                       

 

2

t


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
 


                                              (2.11) 

 
where    is the z-component of vorticity given by, 

III. NORMAL MODE ANALYSIS ALONG WITH DTM 

PADÉ APPROXIMATION 

We now applying  normal mode solutions of the form 

                                                

( , , ) Re{ ( ) }

( , , ) Re{ ( ) }

( , , ) Re{ ( ) }

iax t

iax t

iax t

w x z t w z e

x z t Z z e

x z t z e





















 

                          (3.1) 

 

In the above expansions, the functions ( ), ( )w z Z z and 

 z  could be complex. A is the wave number of a 

particular normal mode and  is the complex Eigen value that 

shall determine the stability of the system. It is actually the real 

part of the Eigen value that determines the stability of the 

system. Note that for ( ) 0R    as time evolves the 

solutions will decay exponentially, and hence the system is 

stable. For ( ) 0R   as time evolves the solutions will grow 

exponentially, and hence the system is unstable. The case  

( ) 0R   characterizes the point at which the system is 

neither stable nor unstable, often termed marginally stable. 

 can be thought of as a bifurcation parameter, and since the 

stability of the system changes at 0,  this is the 

corresponding bifurcation point. Hence there are two different 

classes of instability that may occur: instability due to a purely 

real Eigen value going through zero—a direct, or ordinary 

bifurcation and instability due to the real part of a complex 

conjugate pair of Eigen values going through zero—a Hopf 

bifurcation. The former is often termed a stationary instability 

and the latter is often termed  over stability, or an oscillatory 

instability. 

 

Inserting  (3.1) into equations (2.9), (2.10) and (2.11) 

respectively gives 

 

1

2 22 Pr Pr( )Z Ta DW D a Z                         (3.2) 

1

2 2 2 2 2 22( ) Pr Pr Pr( )D a W a Ra Ta DZ D a W      

                                                                          (3.3) 
2 2( )W D a                                           (3. 4) 

 

Rearranging the above equations so that like terms 

are together gives 

 

 
1

2 2 2( )
Pr

D a Z Ta DW


                                 (3.5) 

                                    
1

2 2 2 2 2 2 (3.6)( )( )
Pr

D a D a W a Ra Ta DZ


    

                                       
2 2( )D a W                                            (3.7) 
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2

along with  stressfree boundary conditions,

0     at 0  and 1                             

0       at 0  and 1                 (3.8)

                                                   

W D W z z

DZ z z

   

    

                   
using the  appropriate DTM transformations in the set of  

equations (3.2),(3.3) and (3.4) we have, 

     

 

2

1 2

( 1) 2 2
Pr

( 1) 1                                               (3.8)    

k k F k a F k

Ta k G k

 
     

 

  

                                                                          
 

   2 2

1 2 2
(3.9)

( 1)( 2)( 3)( 4) 4

( )( 1)( 2) 2 ( )
Pr Pr

(Ta) (k+1)F(k+1) -a RaH[k]

k k k k G k

a k k G k a G k
 

     

     



                          
2

(3.10) (k+1)(k+2) H[k+2]=-F(k)+(a + )H(k)

      

       

       

 along with boundary conditions,

H 0 0, H 1 1, F 0 0, F 0 0

0 0, G 1 1, G 2 0, G 3 0

                                                                      (3.11)

G

    

    
 

IV. LIMITING FROM ROTATING TO NON-ROTATING CASE 

For rotating convection we have to assume that in general the  

Eigen values are complex.  Enforcing this and converting 

equation (3.6) to single variable by operating using  the 

operators, 
2 2 2 2( )( )

Pr
D a D a


    gives 

 

2 2 2 2 2 2 2

2 2 2 2 2 2

( )( ) ( )
Pr

( ) ( )
Pr

D a D a D a W

a Ra D a W TaD D a W







     

    
(4.1) 

 

Since  0
W W Sin n z satisfies the boundary conditions 

we obtain 

 

   

 

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

Pr

0  
Pr

                                                                        (4.2)

n a n a n a

a Ra n a n Ta n a


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
   

 
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 

 
       

 

which is the required Dispersion relation  and  is the eigen 

value.  In the limit as 0Ta  the rotating system converges 

to the non-rotating system and for 1n  , equating like 

powers of   gives, 

            
3 2

2 1 0
0c c c                           (4.3) 

Where the coefficients, C1, C2and C0 are given by 

            
  2 2

2
1 2Prc a                         (4.4)  

   
 

2 2
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1 2 2
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Ta a Ra
c a

a






 
    
  

      (4.5) 

          
3

2 2 2 2 2

0
Prc a Ta a Ra            (4.6)   

. 

Clearly 
2

0c  always holds, since its constituent 

components are all themselves greater than zero. In general 

0
c and 

1
c   are not  as they are affected by the values of the 

other parameters.  Congruously, 1 2 0
c c c  is not  always 

greater than zero due to the  effect of the Rayleigh number. 

 

Consider  0Ra   in this case
0

c , 1
c   2

c and  
1 2 0

c c c  will 

all be greater than zero. Since 
0

0c  this means that there is 

at least one stable-negative-real root. We shall denote this 

by
0

0  Thus equation (4.3) can be factorized as, 

  2

0 1 0
2 0d d                               (4.7) 

with the solutions for the other roots given by, 

            
2

1 1 0
d d d                                 (4.8) 

expanding the above equation we get, 

    3 2

1 0 0 1 0 0 0
2 2 0d d d d            

Comparing with equation (4.3), we get  
 1 0 2
2d c  ,  0 1 0 1

2d d c 
0 0 0
d c 

  
(4.9) 

 

 
   Fig.2.  Rayleigh    Number     verses wave  number  for   

   different Taylor number. 

V. STATIONARY INSTABILITY ANALYSIS 

     For a stationary instability, 
0

0c   giving ,   

          
   

3
2 2 2

2

s
a Ta

Ra
a

  
                   (5.1) 

Differentiating equation (5.1) with respect to ‘a’ and equating 

the resultant derivative to zero  gives,   
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6 2 4 6 22 3a a Ta                              (5.2)       

 
We must solve this equation for a for a given Ta in order to 

find the critical wave number.  
 

Ta 
       

 s

c
a    

 s

c
Ra  

410  5.69797 35.377 10  
510  8.62611 42.131 10  
610  12.8632 49.222 10  
710  19.0244 44.147 10  

 
810
   

 28.0238 61.187 10  

 

 

  For a given Taylor number, for stationary rotating 

convection, asymptotic limit    Ta       The dominant 

balance in this case will be between the term on left hand side 

and term involving the Taylor number on the right hand side.   

                            Taa 26 ~2   

A. we get an asymptotic solution for
 s

Ra Hence as 

Ta , we have,   

      

1 6
2

( ) 1 6~ 3 (5.3)
2

s

c
a Ta

 
 
 

                                                   

          

2 3
2

( ) 2 33      (5.4)
2

s

c
Ra Ta

 
  

             
 

VI. OSCILLATORY INSTABILITY ANALYSIS 

For a stationary instability, 
1 2 0

0c c c   giving
   

 
        

 

32 2 2 2 2

22
(6.1)

1 Pr Pr2 1 Pr

1 Pr

o
a Ta

Ra
a

   



 

To find the critical value once again  differentiating and 

equating to zero we obtain, 

 
2 2

6 2 4 6

2
(6.2)

Pr
2 3

(1 Pr)

Ta
a a


   



 

Solving gives the values of  ‘a’, at Pr=0.1. 

 
Ta 

       

 o

c
a    

 o

c
Ra  

410  2.54236 31.731 10  
510  3.58352 43.401 10  
610  5.50091 41.062 10  
710  8.340066 44.161 10  

 
810
   

 12.4495 61.785 10  

 

 
For a given Taylor number, for Oscillatory rotating 

convection, asymptotic limit    Ta       The dominant 

balance term involving the Taylor number on the right hand 

side is given by,   

                         
2 2

6

2
(6.3)

Pr
2

(1 Pr)

Ta
a






we get an asymptotic solution for
 o

Ra Hence asTa , 

we have,  
    

1 6
2 2

1 6

2
(6.4)

Pr

2(1 Pr)

s

c
a Ta

 
  

 

 

2 3
2 2

2 3

2
(6.5)

Pr
6(1 Pr)

2(1 Pr)

o

c
Ra Ta

 
   

 

 which is similar as we obtained during stationary 

instability   
 

 
    Fig3.  Rayleigh  Number  verses wave number for Ta=10^4 for 

     Oscillatory Rotatory convection. 

 

The critical number Prc happens when  Rac
(s)

  and  Rac
(o)

  are 

equal in the limit  Ta →∞ which is given by Prc=0.676605. 

Therefore when Pr > Prc and  Rac
(o)

  <  Rac
(s)

  so convection will 

be stationery and for  Pr < Prc  for  Particular Ta when Rac
(o)

  <  

Rac
(s)

  Oscillatory convection will be set.  

 

VII. EIGEN FUNCTION SOLUTIONS 

 

The observable difference in increasing the rotation rate is to 

increase the critical wave  number [6].  Physically, this means 

that solutions will oscillate more in the horizontal direction,  as 

the rotation rate is increased. The solution for vertical velocity 

is  ~ sinW n z  with mode n = 1 facilitating the lowest 

Rayleigh number. It was necessary for to be of the same parity 

as W  and Z  to be of opposite parity. 
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 Using equations (3.5), (3.6) and (3.7), the solutions for 

,W 
 
and Z  are given by, is a constant determining the 

amplitude of the perturbations.  

 

                                    0
sin                 (7.1)W W z

                                             

                              
0

2 2
sin              (7.2)

W
z

a
 





                                       

(7.2)
 

                            

1 2

0

2 2

cos
             (7.3)

Ta W z
Z

a

 





                                             

(7.3)
 

Where, 
0

W  Using the original form of normal mode 

expansions given by equations (5.5),(5.6) and (5.7), we have, 

 

cos sin                                            (7.5)ax z   

 

 2 2 cos sin                            (7.6)a ax x   
   

                            1 2 cos sin                                 (7.7)Ta ax z                                      
Where,  

2 2

0
W a    is arbitrarily-chosen. 

 

   Fig 4. Plots of vertical velocity for  Ta=
410 , Pr 1  

 
,

s

c
R Ra

 
 using DTM- Padé  Approximation 

VIII. RESULTS AND DISCUSSIONS 

The fluid flow equations for Two dimensional 

Rayleigh-Benard convection in a Boussinesq fluid for vertical 

velocity  and Dispersion relation is derived. The graph of 

Rayleigh Number verses wave number is plotted in figure 2.  

In figure2 we see that the curves are oriented towards the 

rotational axis as Rayleigh number increases for different 

Taylor number. The Plots of vertical velocity,  vorticity and 

temperature are plotted in figures 4, figures 5 and figure 6  

using Differential Transform Method along with Padé 

Approximation where convection cell formation can be 

visualized.   

The linearised solutions are plotted in  figures 6, figures 7 

and figure 8 respectively. It can be visualized that the flow is 

composed of rising and sinking columns of fluid, that are 

driven by the buoyancy. These are known as convection cells. 

For a larger Taylor number, in a box of the same length, the 

linear Eigen functions would be composed of more cells in the 

horizontal direction 

 
 Fig 5. Plots of vertical vorticity for  Ta=

410 , Pr 1  
 

,
s

c
R Ra

 
using DTM- Padé Approximation. 

 

         Fig 6. Plots of vertical temperature for  Ta=
410 ,    

       Pr 1 , 
 s

c
R Ra

 
 using DTM-Padé Approximation. 
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  Fig 7.  Plots of vertical velocity for  Ta=
410 , Pr 1 ,  

 
,

s

c
R Ra

 
using  Matlab . 

 
Fig 8. Plots of vertical vorticity for  Ta=

410 , P Pr  
 

,
s

c
R Ra

 
 using  Matlab 

 

 

Figure 9. Plots of vertical vorticity for  Ta=
410 , Pr 1  

 
,

s

c
R Ra using  Matlab 

 

IX. CONCLUSIONS 

The flow system for two dimensional Rayleigh-Bénard 

convection in a Boussinesq  fluid is studied to find the critical 

value of the Rayleigh number, for a particular wave number, at 

which convection could occur. for the Linear theory for  the 

rotating system. Furthermore, we distinguished between the 

type of instability at the onset of convection—stationary or 

oscillatory. We computed stability conditions to determine the 

type of instability at the onset of convection that were 

dependent on the value of the Taylor number and the Prandtl 

number and also by solving the linearised equations using 

Differentia transform method to analyses the solutions 

obtained.  
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APPENDIX 

TABLE 1: THE OPERATIONS FOR THE ONE-DIMENSIONAL DTM. 

Original Function  Transformed Function 

   ( ) =w x u x v x     ( ) =UW x x V x  

 ( ) =w x u x   ( ) =    

where  is a constant

W x U x


 

 
w(x) =

du x

dx
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dx
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U k r

  


 

 
   w(x) =u x v x  
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   
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dx dx
   

   

k
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1 1
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1 1

r k r
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  
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