Characterization of R-Annihilator $-\mu$ - Hollow Modules

^{*}R.S. Wadbude and Sagar K. Gorle

Abstract: In this paper we construct some examples for R-Ann-µ-hollow modules and add theorems, propositions. Related concept was given by Nicholsion and Zhou. Let M be an R-modules, then M is R-Ann-µ-hollow module if and only if every submodule A of M such that M/A Small in M. Every finitely generated proper submodule N of M is R-Ann-µ-small for M is a faithful and torsion-µ-small.

Keywords: Hollow module, annihilator-small, µ-small, cosingular module, R-Ann-hollow, R-Ann-µ-small submodule, torsion-µ-small.

INTRODUCTION

Throughout this paper all rings are associative ring with identity and modules are unitary left modules .Nicholson and Zhou defined annihilator-small right (left) ideals in [1] as follows: a left ideal A of a ring R is called annihilator-small if A + T = R, where T is a left ideal , implies that r(T) = 0 where r(T) indicates the right annihilator.

Kalati and Keskin consider this problem for modules in [2] as follows : let M be an R-module and S=End(M).A submodule K of M is called annihilator-small if K + T = M, T is a submodule of M ,implies that $r_s(T) = 0$, where r_s indicates the right annihilator of T over S=End(M), where $r_s(T) = \{f \in S; f(T) = 0, \forall t \in T\}$.

A nonzero module M is called hollow module, if every proper submodule of M is small in M [1]. A submodule A of M is called μ -small submodules of M ($A \ll_{\mu} M$) if whenever

 $M = A + X, \frac{M}{x}$ is cosingular, then M=X. see [1]. A nonzero R-module M is called μ -Hollow module if every proper submodule of M is μ -small sub modules of M. A nonzero module M is called R-annihilator –hollow module (R-Annhollow) if every proper submodule of M is R-annihilator – small submodule of M. These observations lead us to introduce the following concept a nonzero module M is called R-Annihilator – μ - Hollow Module if every proper submodule of M is R-annihilator – **Examples**:

1) For an R-module M ,M is not R-Annihilator $-\mu$ -small submodule of M.

where M = M + 0 and $Ann(0) = \{r \in R : r.0 = 0\} = R \neq 0$ 2) Z_4 as Z-module is R-Ann- μ - Hollow (only proper submodule of Z_4 *is* Z_2 and $Z_2 = \{0,1\}$ is

µ-small in Z.

3) Every simple module is R-Ann- μ -Hollow module (Z_3 as Z-module).

4) Z_6 as Z-module is not R-Ann- μ -Hollow module since {0,3} and {0,2,4} are not μ -small in Z_6 .

An R-Ann- μ -small submodule of an R-module M need not be small submodule.

For example, consider the module Z as Z-module, for every n>1, claim that nZ is Z-Ann- μ -small submodule of Z, let Z = nZ + mZ, where mZ is submodule of Z. Since Z has a nonzero divisors, then Ann mZ={r $\in Z$;r.mZ=0}=0.Thus nZ is Z-Ann- μ -small submodule of Z. But {0} is the only small submodule of Z. Therefore Z as Z-module is R-Ann- μ -Hollow module.

A small submodule of an R-module M need not be R-Ann- μ -small submodule.

For example, consider Z_4 as Z-module.{0} and {0,2} are small submodule of Z_4 . But $Z_4=\{0\}+Z_4$ and $Z_4=\{0,2\}+Z_4$ and Ann $Z_4=\{n\in\mathbb{Z}: n. Z_4=0\}=4Z \neq 0$. Thus each of {0} and {0,2} is not Z-Ann-small sub modules of Z_4 is not R-Ann- μ small submodule.

Results:

Proposition1. Let f: $M \rightarrow M'$ be a homomorphism and let M' is R-Ann- μ -Hollow module such that for all N \leq M such that kerf is μ -small in M then M is R-Ann- μ - Hollow module.

Proof: Let $N \not\subseteq M$ with M = N+K, where $K \leq M$. To show Ann K = 0. f(N) + f(K) = f(M) = M' (f is epimorphism), if f(N) = M' = f(M) then,

 $f^{-1}(f(N)) = M. N + kerf = M$, since kerf is μ -small of M then N = M(contradiction). Therefore $N \neq M$. since f(N) is R-Ann- μ -small submodule of f(M), then $f(N) \neq M' = f(M)$. Thus M' is M is R-Ann- μ - Hollow module. But Ann f(K) = 0 and Ann $K \leq Ann(f(K)) = 0$, Then N is R-Ann- μ -small submodule of M. Thus M is R-Ann- μ - Hollow module.

Remark: Let f: $M \rightarrow M'$ be a homomorphism from R-module M to M'. The inverse of R-Ann- μ -small submodule of M' need not be is R-Ann- μ -small submodule in M.

Consider $\pi: Z \to \frac{Z}{3Z} \cong Z_3$ the natural epimorphism since 0 is R-Ann- μ -small submodule in Z_3 , but $f^1(0) = 3Z$ is not R-Ann- μ -small in $f^1(Z_3) = Z$.

R. S. Wadbude, Department of Mathematics, Mahatma Fule Arts, Commerce and Sitaramji Chaudhari Science Mahavidyalaya, Warud. SGBAU,Amravati [MS]. INDIA, Pin- 444906. Mob 9423054440

S. K. Gorle, Hutatma Rashtriya Arts & Science College, Ashti, Wardha. INDIA, Pin- 444906. Mob 9604069006

Proposition 2. If $\frac{M}{k}$ is R-Ann- μ - Hollow module then M is R-Ann- μ - Hollow module for all K proper submodule of M. **Proof:** Let $\frac{M}{K}$ is R-Ann- μ - Hollow module and let N \leq M such that M = N + L, L is a submodule of M then Ann L= 0,if every proper submodule K of M such that $\frac{M}{k}$ is μ -hollow and K is a submodule of M then M is μ -hollow[1]. $\frac{M}{K} = \frac{N+L}{K} = \frac{N+K}{K} + \frac{L+K}{K}$. Since $\frac{N+K}{K} \leq \frac{M}{K}$, then $\frac{N+K}{K}$ is R - Ann - μ small submodule $\frac{M}{K}$, then ann $\frac{L+K}{K} = 0$. Thus Ann(L) is submodule of Ann $\frac{L+K}{K} = 0$, therefore Ann L= 0, and M is μ hollow. Therefore M is R-Ann- μ - hollow module.

Proposition 3. Let M be a faithful μ -hollow R-module then every proper small submodule of M is R-Ann- μ - hollow module.

Proof: Let M be a faithful μ -hollow R-module, N be proper small submodule of M.

M = M + U, since N is small in M then M = U, Ann (M)= Ann(U) so Ann (U) = 0. Thus N is R-a-small submodule of M, such that $\frac{M}{N}$ is cosingular. Thus M is R-Ann- μ - hollow module.

Theorem 1.: Let M be an R-module, then M is R-Ann- μ hollow module if and only if every proper submodule A of M (Ann (A) = 0) such that $\frac{M}{A}$ is cosingular is small in M.

Proof: \Rightarrow Let A be a proper submodule of M, such that $\frac{M}{A}$ is cosingular and Ann(A) = 0.

To show that A is small in M (A \ll M), assume that there exists B \subset M such that M = A + B, since M is R-Annµ-hollow module then B \ll_{μ} M and we have $\frac{M}{A}$ is cosingular then M = A. which is a contradiction. Thus A is small in M (A \ll M).

 \Leftarrow To show that M is R-Ann-μ- hollow module, let A be a proper submodule of M assume that A is not μ-small in M ,then there exists a proper submodule B of M such that $\frac{M}{B}$ is cosingular and M=A+B thus B≪M then M=A (since A is a proper submodule of M)which is a contradiction ,thus M is R-Ann-μ- hollow module.

Proposition 4. Let M be a R-module and K be R-Ann- μ -small submodule in M. if Rad(M) is μ -small submodule of M and Z(M) is finitely generated then K+ Rad(M) + Z(M) is R-Ann- μ -small submodule of M.

Proof: Let $Z(M) = Rz_1 + Rz_2 + Rz_3 + ... + Rz_n$ where $z_i \in Z(M), \forall I = 1, 2, 3...n$

Let K+ Rad(M) + Z(M) + X = M where X is a submodule of M .since Rad(M) is μ -small submodule of M, then K + Z(M) + X = M. but K is R-Ann- μ -small submodule in M, therefore Ann(Z(M) + X) = Ann(Rz_1 + Rz_2 + Rz_3 + ...+ Rz_n + X) = 0.

So $(\bigcap_{i=1}^{n} Ann Rz_i) \cap AnnX = 0$. Since

 $z_i \in Z(M)$, then ann $z_i \leq {}^e R$, so Ann(X) = 0 and $\frac{M}{X}$ is cosingular. Thus K+ Rad(M) + Z(M) is R-Ann- μ -small submodule of M.

Proposition 5. Let R be an integral domain, let M be a faithful R-module then every proper submodule N of M ; with Ann $N \neq 0$ is R-Ann- μ -small.

Proof: Let M = N + K, then $0 = Ann(M) = Ann(N+K) = Ann(N) \cap Ann(K)$. Since $Ann \neq 0$ and R is an integral domain, then ann $N \leq^{e} R$. therefore Ann K = 0, hence K << M where $\frac{M}{K}$ is cosingular, thus N is R-Ann- μ -small.

Proposition 6. Let R be an integral domain and M be a faithful and torsion μ -small module then every finitely generated proper submodule N of M is R-Ann- μ -small.

Proof: Let $N = Rx_1 + Rx_2 + Rx_3 + ... + Rx_n$ be a finitely generated proper submodule of M and M = N + K, then $0 = Ann(M) = Ann(N + K) = Ann(N) \cap Ann(K) = (Ann(Rx_1 + Rx_2 + Rx_3 + ... + Rx_n)) \cap Ann(K) = (\bigcap_{i=1}^n ann Rx_i) \cap Ann(K)$.). Since M is torsion, then

Ann $(Rx_i) \neq 0 \forall I = 1,2,3,...,n$. But R is integral domain then Rx_i is essential in R, for all i. Hence $\bigcup_{i=1}^n Ann Rx_i =$ Ann(K) = 0 thus, N is R-Ann-small in M, but M is μ -small module, thus M is cosingular implies $\frac{M}{K}$ is cosingular. thus N is R-Ann- μ -small.

Corollary 1. Let R be an integral domain and let M be a projective small R-module then every proper small submodule of M is R-Ann- μ -small submodule of M.

Corollary 2. Let M be a small R-module and let $K \ll_{\mu} N \ll_{\mu} L \ll_{\mu} M$ such that $\frac{L}{N}$ is R-Ann- μ -small submodule of $\frac{M}{N}$ then $\frac{L}{K}$ is R-Ann- μ -small submodule of $\frac{M}{K}$. **Proof:** Let f: $\frac{M}{K} \rightarrow \frac{M}{N}$ be the map defined by f(x + N) = x + N, $\forall x \in M$. easily to show f is an epimorphism.since $\frac{L}{N}$ is R-Ann- μ -small submodule of $\frac{M}{N}$, therefore $\frac{L}{K} = f^{-1}(\frac{L}{N})$ is R-Ann- μ -small submodule of $\frac{M}{K}$. Thus $\frac{L}{K}$ is R-Ann- μ -small submodule of $\frac{M}{K}$.

References

[1]. Nicholson W. K. and Zhou Y. 2011. Annihilator-small right ideals, Algebra Collog. 18(1), pp: 785-800.

[2]. Amouzegor Kolati T. and Kesken-Tutuncu D. 2013. Annihilator-small sub modules, Bulletine of the Iranian Mathematical Society, 39(6), pp: 1053-1063.

[3]. Khalid was an Kamil E.M. 2018. On a generalization of small sub modules Sci. Int. 30(3), 359-365.

[4]. Poyman M.H. (20050 "Hollow modules and semi hollow modules" M.Sc. Thesis college of Science, University of Baghdad.

[5]. Al-Huemuzy kala K. (2016) "R- annihilator-Hollow Modules" IJSR, pp: 400-402.

[6]. Anderson, F. W., Fuller, K. R. Rings and Categories of Modules, Springer-Verlag, NewYork, 1992.

[7]. Zhoa D.X. and Zhang X.R., Small-essential sub modules with respect to an arbitrary Sub module, Journal of Mathematical Extension Vol. (7), No. 3(2013), 15-27.