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The Exponential Attractor for Kirchhoff type
Suspension Bridge Equations with Linear Memory
and Polynomial Damping
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Abstract—In the article, by using so-called enhanced
flattening property, we investigated the existence of exponential
attractors for Kirchhoff type suspension equations with linear
memory and polynomial damping. Some known results are
improved and extended.

Index Terms—Suspension Bridge Equations; Enhanced
Flattening Property; Exponential Attractor.

. INTRODUCTION

Let €2 is a bounded domain in IR with smooth boundarydf2,
we are concerned with the the exponential attractor to the
following Kirchhoff type suspension bridge equations

ug + a,ﬁzu - ((r + B|Vul?) A + | ug || "uy + E*ut

— [ u(t = s)ds+ f(u) = f(z), zet>0, (11)
u—Au—U[ or u=Vu=0), €09, '
u(z,0) = up(z), uy(z,0) = uy (z), z e,

where 4 > 0,5 > 0,7 >0 and » > 0 are given constants, the
real constant < accounts for the axial force acting at the end
of the road bed of the bridge in the reference configuration, %?
is the spring constant and ™+ = max{u, 0}, the memory
kernel : and the nonlinearity f () satisfy the following
assumptions respectively:

(L) pe CI(R“L) NLYRT), p'(s) <0< p(s), Vs €RT.

(I: )fD p(s)ds = pg > 0, V5€R+
(I3) @' (s)+0u(s) <0, VseRY, 4 >0
(I4) liminf f(s) > A1, ¥V 5 € R, where A is the first eige-

|s| =00
nvalue of A2 with boundary condition u|sn = Aulag = 0 or
(ulag = Vulag = 0).
(I5) |f ()] < ko(1 + |s|P), where ky > 0and p> 1.

Assumption (/) and the definition of F(u) = [, f(s)ds
imply that
F(s)+ns*+ K, >0, ¥YscR, K; >0, 71>0, (12
—My < F(u) < %f{u)u + My, My, My > 0. (1.3)

For the model (1.1), it is originally in suspension bridge
equations which were posed as a new problem in the field of
nonlinear analysis [1] by Lazer and McKenna in 1990. In the
suspension bridge system, suspension bridge can be regarded
as an elastic beam with hinged ends ( or both fixed points).
Lately, similar models have been studied by many authors, see
[2-10]. Zhong et al.[2] investigated the existence of the
strong solutions and strong global attractors for the single
suspension bridge equations utilizing the condition (C)
introduced [10] and the technique of energy estimates. In [3],
the authors obtained exponential attractors of suspension
bridge equation. Kang [4] considered the asymptotic behavior
of the thermoelastic suspension bridge equation with past
history. Besides, the problem of longtime behavior of the
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solutions to the suspension bridge equations has been studied
by plently of authors [5-7]. In this article, under a weaker
condition of the nonlinearity, we take advantage of the
enhanced flattening property proposed by Li and Wu [8] to
show the existence of exponential attractor for Kirchhoff type
suspension equations with linear memory and polynomial
damping.

I1. PRELIMINARIES
We consider H = L?(2) withnorm || - || and inner product
(-, -). We also define the space V; = H} (), and
. i, HOQ(Q), for ?.t-‘ag = VQL‘@Q =0,
Va = D(4%) = {H?(Q) A H(S), for ulgo = Aulpo = 0,
whose norms and scalar products are given by
llullvy, = [[Vull, (u,v)v, = (Vu, Vo),

leellvey, = [[Du]], (w,0)v; = (Au, Av),
respectively, where 4 — A2. And using the Poincaré inequa-
lity, for any ¥ u € V%, we have
1 . 1 1 1
[AZa||* = Ay fJufl?, [[AZul|* > A7 || ATul?.
Then we introduce the Hilbert space

LR Vi) = (¢ R+—>V\/

2.1)

$)IE(s)IIP,ds < oo},

with the norms and the scalar products

(o), = | () (uls), v(s))vids,

oQ
““”im =(u,u),v, = / ;L(.S)Hu(b)”i;dé <oc,i=1,2.
Jo

Finally, we define the space W = V4 x H x L2 (RT,V5),
endowed with the norm
[ty e, €)1y = [ 2ul|® + [l + [IEY17, v -

In order to accomplish our main results, we need to convert
(1.1) into a deterministic autonomous dynamical system.
Therefore, motivated by [1], we introduce the displacement
variable

€=z, s) =u(z,t)—u(r,t—s), (r,5) € WxR*, t >0, (2.2)
and thus
E(x,8) + € (r,8) = wy(z,1), (z,5) €QXxRT, ¢ >0.(2.3)
Leta=1+ [;° u(s)dsand € L'(R™), then the equation
(1.1) is equivalent to the equation
wr + A% — (0 + B Vul|®) A A ylae]|Tup + k2ut
+fU p(8)A2E (8)ds + f(u) = f(x),  (z,t) € Q x R,

& =u — ¢, (‘rfe)EQxR*xR*.(zﬂr)

E=A0L=0(or £=VE(=0), '

w=>Nu=0(or u=Vu=0),

&(x,0) =0, €%, 8) = &olx, 8),

u(;y,()) = UO(‘I)! uf(zso) = (I)'
where

(z,8) € XX RT, £ >0,
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{uu(r) =ug(x,0), u(x) = Aoz, t)|i=0, €,
&o(z,8) = up(z,0) — u(x, —s), z,8) € xR,

For the sake of the existence of exponential attractor, we
recall here some abstract results.
Definition 2.1 (Enhanced Flattening Property): Let X be
a uniformly convex Banach space, for any bounded set B of X,
there exist k,I > 0,7 > 0 and a finite dimension subspace
X, of X, such that
(1) P.(Uss¢ S(t)B) is bounded, and
QI = Pu)(Usse S(t)z)|| < ke ™ + k(n),Vo € BVt > T.
Here P, : X — X; is a bounded projector, n is the dimensi-
on of X and %{s) is a real-valued function satisfying

lim k(s) =0.

S—0C

Theorem 2.251: Let B is a bounded absorbing set for S(t) in
X, then the following are equivalent:

(1) The measure of non-compactness is exponentially
decaying for U,>,S(t)B, i.e., there exist £, > 0 such that
p(Usse S(s)B) < ket

(2) For S(¢), there exist exponential attractors.
Theorem 2.3%1: Assume the semigroup {S(t)} > satisfies t-
he enhanced flattening property, then the measure of non-co-
mpactness decays exponentially for the semigroup
USZtS(t)B.
Theorem 2.4%): Let X be a uniformly convex Banach space,
and {S(¢)}+>q be a continuous or norm-to-weak continuous
semigroup in X. Then for {5(¢)}+>¢ there exist exponential
attractors if the following condictions hold true:
(1) there is a bounded absorbing set 13 ¢ X, and
(2) S(¢) satisfies the enhanced flattening property.
Theorem 2.5 |_et assumptions (1;) — (/5) and
ge L?(Q) hold true.Then for any (g, u1, &) € W and any
T > 0, there exists a unique solution 1 of (1.1) such that
w €C([0,T]; Va),us € C([0,T]; H),
e C([0,T]; L (RT; V).
Moreover, the solution continuously depends on the initial
data on W.
Lemma 2.6: In view of Theorem 2.5, problem (1.1) generates
a Cg-semigroup S(t) : W — W in the space W, where
S(t) s {uo,ur, &0} — {ult), ue(t), €}, > 0.

I1l. BOUNDED ABSORBING SET

Theorem 3.1: Let us assume (I;) — (I5) and o > -2 — ¥A1

Then the semigroup {5(t) }+>egenerated by (1.1) in the space
W have a bounded absorbing set

Bo = {(u, ur. ) € W; || (u,ur, €) | < R},
i.e. there exists /2 > 0 possessing the property: for any boun-
ded set B < W there exists to = t(B) > 0 such that
IS®) Yl = Il (u(t), ue(t), ) [y < R for all £ >, and
yo = (up,u1,8) € B.
Proof: Multiplying (2.4) by w,, and integrating over €2, we

obtain
[ -2
@ (gl + g 2l + 219l + 2wl + &t
(F(U)a ) - (ﬂ:“)) + ’I’(|Ut‘ruﬁ.; ’U-t) + (ff:ul),u,vz =0. (3-1)
Using (/3), (2.4) and Haélder inequality, one has
1
(fls ”‘f-)sz = 9 dt ||5 ”p Va: (3.2)

Thus, by combining (3.1) with (3.2), |mpI|es that

VAL 4

d .
SFO+ YRy, +rluli3 <0, @3
where
1 1 @ . 5] .
F(t) = gluel® + —||Au||2 + 5 IVull® + I Vul+
k2 2 t
o ([ IIE 12 v, + (F(u), 1) = (g,u).

Integrating (3.3) over [t,t+1], we deduce that
t+
w[ e ()[2ds < F(t) — F(t+1) = [H(E)

(3.4)
By Halder inequality with - = ++ -2, = 1, we have

T+
t+1 ‘ L optrl
[ [t < j0r7 [ o)z,
t Q t
1

|07 [H (1))

which implies that there exist ¢, € [¢,¢ + 1]and ¢ € [t + 2,
t + 1] such that

(3.5)

()P < M2 |7 [H(®)]7=,i=1,2. (3.6)
b
Then multiplying (2.4) by w«(t) and integrating over
Q x [t1,t2], we get
t2
f (IIAM(-"’)H:’ +af| Vu(s)[* + Bl Vuls)[|* + & [lu™ ()]
th
+ (J () u) ~ (g.u) ) ds
= (u(t1), ug(t1)) — (u(ta), us(t2)) [ [l (5)]|Pds—
ta2
— /; (Juee] "y, u)ds — /f1 (&' u) v, ds. (3.7)

From Hélder, Young |nequaI|ty and (1.2)-(2.1), we have

(g,u) < IIJH2 IIAuH2 (3.8)
F(u),1) > —n|u —KS2>——V - K19, (3.9
(F(u),1) 2 —nlu/* 1\ = \/IH ul® - Ki1|2. (3.9)

Using (3.8) and (3.9), we assume F,(t) = F(t) + %, where
Cy = 8K, |9 + %Hg“z. Hence, when o > % - @ we
conclude

Folt) = S lluel* +

—_

—HAHH2 —Hftllp Va

2
1 .
> <l (uy i, €|y (3.10)
Combining ({2) and Young inequality, we infer
L
(€ sl < G2 + 22w @)

Now by (3. 11) and taklng the sum of f* [3]lul|? + S+

3 ||§tHﬂ v, + (F(u),1)]ds in both sides of (3.7), we obtain

't 3 [t
Fy()ds < e [ue(t0)ll + [t hue(e2) ] + ) [ l[ue(s)||*ds
Jty o v Sty
+7 / / || || dds + / / (F(u) — flu)u)dzds
Ji, Ja

ota v
Ho C
+£2 nmwww+/\mnhﬁ+4-

2 i1 t 8

From (2.1), (3.6) and (3. 10) it follows that

2\Q|
(e[ [lue(t:)]] < [H( 72 sup u(s)|
t<s<tt1
44/2|Q| 77D 2 1
£—<£L—ﬂﬂmw«sw ()
yrtz \1/\1 t=s<t+l
128|072 4 1
< ‘7‘;[}1(#)]!“ +— sup Fyls),i=1,2.
Ay 6 pcs<ir1

(3.12)
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By Hilder inequality, (3.4)-(3.10) and immersion (1.1) in the space W satisfies the enhanced flattening
Vo — LPT2(0Q2), we have property.
[f, / g ) deds Proof: Assume A in the space /7 exists eigenvalues
" I N A2 (0< A <--- <A <o Ay w0 asj — oo)and
< (/ /Q|”L|r+2dm,g)w(/f /Q‘?“?‘+2r];rds) w2 eigenfunctions{e, } >, which are orthonormal in H and V;
< (@)%C sup \|Au‘(,51)“. such that Ae; = Xje;(Vj € N). Let H,, : span{e, ez, -,
Ty " i<s<iql ¢y, fand P, : H — H be an orthogonal projector. For any
<230, ( Hi(t )2)% sup }-éi(s) (u, u.,;gf) €W, we v_vrite (u,ut,fi) = (uy,ug, &) + (??,
3902 . ‘3135”1 313 use, £5) = +y% with (ul,_mt,‘fi) = (R.lu,Pnut,P”{'):
< oz JH [H(t ]—+Tﬁt<:l$+lf"( 5): B13) set r=0, taking the inner product of (2.4) with

Combining (3 10) and Young inequality, we get wa = Uz + up(0 < e < 1)inH, we get

La 2 i 4 +
B[ s <ot ap R, G L (ol + el - all Ve + 5 Vg + K2 ?)
e s +e(e — ) (uz,w2) + (v — E)Huv'zl\2 + el Aug |+
[Nt < Cot g s For B8 sad|Vunl + e Vual* + kel |+ (€ w)yva
t s .
In view of (1.3) and (3.5)-(3. 15) it follows that H(f(w),w2) = (g(@), wa). _ @y
fz]:( s < ((‘ + GolH) )[H o) NS 5) Thanks to (2.1), (/5), Hélder and Young inequality, we find
as r+2 - 3 8
Ju 4 4 icatrrn”® e(e = ) (uz,wa) + (v - ) lwal|* + €| Aus
‘ T (316 _ M 2 B o 4o
+( g (16 > e(l = )l Auall” + (y = ) el (4.2)
whereq, = BRI | L2 0, - 2k Using (3.4) and (Fu).w2) < Doy ot FolE =PI, (43)
the mean v?lue theorem, there exists 7 € (tl,tg) such that (g(x),wa) < 7Hw2“2 *H(I P (4.2)
2 - 1 T . .
Fyls)ds = Fy(t)(t2 —hJ z 5 F(t+1), .
Ju 2 OWlng to (3.2), (3 11) and (4. 1) (4. 4) we deduce
d .
Ay < R 2 [ 7o (@11 22T +Q(0) £ I - PASWIE + (I = Pa)g(a)l”, (45)
From (3.16), (3.17) and inequality 5 < 2, we get where
Fg(t-)]é (20 + 2C5[H(8)] 7= + [H(1)]* 7)) [H (t)]*? 18) J(t) = [|wo|? + || Aug||* + | Vua | + Euvuzn* + R ug 1P + €2 0,
= osup  Fu(s) + (2Mo +4M,) |9 + 205 + 205 + =L, (S . .
e R Q0 = (1= 1520 - S g+ (é = 3 el + e P
Using the definition of {{(t), we obtailn 2 14 , - 5 y )
2Cy + 2C5[H (1)) 72 + [H(1)]* 77 < Cg = C(B). +Be||Vua||* + Eelluz ||* + H& 15, ve-

Therefore, (3.18) can be rewritten as

: Choosing ¢ > 0small enough and settlng a > — ‘/j‘_l we
sup f,( ) < 2C6[H(t)) 7% + (4M + 8M7)|Q|

t<s<tt deduce that
+4C5 +4C;5 + % J(t) = [lw2 | + lIIAﬂzII2 (@ a)||Vue|* + §‘|v'“2||4
By inequality (a + b)™ < 2"(a™ + b™), we infer +k2|\u2 1%+ 1012, v >0,
sup Fy' () < GlF@) —Fe+ )+, (319) Q) = SJ(1).
t<s<t41 4
where ¢, = 27420, % and Gy = €y + (8My + 16M,)[Q] + 8C,+  Hence,
¢, are constants depending on B. Thus, applying Nakao’s ij(t) T f,}(t) < 2||(1 — P)f(u)|* + 2”(1 — P g(2)|* (4.6)
lemma( see [11,lemma2.1]), we obtain dt 2 K K
o< (ﬁ(t gy f"[fg(ﬂ)]‘%)_% L Cuif >0, (3.20) Us_ing Lemma 4.1 andg € H, for any 0 < e < % there
Fy(0)e Tt + @8% ifr=o, exists V> 0 such that
where 7 = In (1££7) > 0, st = “t1*L Finally, in view of (I = P f(u)]| <e< ﬁ (4.7
(3.10) and (3.20), it follows that /23
It ) oy < . (3.21) I~ Pyl < e </ 2 (48)

forn > N.And when t > #,, one can see that <. J (t) + 5.J ()

IV. EXPONENTIAL ATTRACTOR o . ,
< 1%, and also applylng Gronwall’s Lemma, we have

From Theorem 2.4, now it remains to show that S(¢) Cio
satisfies the enhanced flattening property so as to prove the J() < J(tg)e 20700) 4 =22 Y (2o (4.9)
existence of exponential attractor. _ Obviously, there exists C'y; > 1 such that
Lemma 4.1: Let assumptions (I7) — ({5) be valid. Then f & ly=(B)]|2 < J(1) ME
C?*(R,R) : H*(Q) —+ H"(Q)(V ¢ > 1) is compact and R - et Cio
continuous. So  ly2(0)I < Cuillyz(to)[|Pe™ 207" + 5o b=t
Theorem 4.2:Let assumptions (/1) — (/5) and r =0 hold  Therefore, the enhanced flattening property holds true.
true. Then the corresponding semigroup S(t¢) of problem Due to Theorem 3.1 and Theorem 4.2, and combining
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with Theorem 2.4, we obtain our main results.

Theorem 4.3(Exponential attractor): Let assumptions
(I) — (Is) and r =0 hold true. Then the corresponding
semigroup.S(¢t)of problem (1.1) possess exponential attractors
in W.
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