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Exponential Inequalities for a WOD Sequence
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orthant dependent (WOD, in short), g, (n), g, (n),n>1
Abstract — In this paper, we give exponential inequalities for  are called dominating coefficients.
the sequence of WOD random variables. Lemma 1[1] Let {X N2 1} be a sequence of WOD
random variables

Keywords— WOD random variables; exponential (1) If {fn(')’ nz 1} are all nondecreasing(or all
inequalities. nonincreasing), then {fn (X N ), n> 1} are still WOD;

(2) Foreach n>1 andany seR,

n n
Eexp{sz Xi} <g(n)] JEexpisX;} .
Since Wang [2] introduced the concept of WOD random i=1 i=1

variable, many scholars have shown great interest in it and  Where g, =max{g, (n).g. (N}

achieved many meaningful results.See,for example, Shen [3] Let {Xn’ n 21} be a sequence of random variables
established the Bernstein type inequality for WOD random  and {c,,n =1} be a sequence of positive number. Define
variables and gave some applications, Wang and Cheng [4] 1<i<n, nx1,

Xiin =—C, 0 (X; <—¢,)+ X1 (=¢c, < X; <c,)+c,1(X; >c,),
with widely dependent increments and gave some X2,i,n - (xi _Cn)l (Xi > Cn)’

applications. He [5] provided the asymptotic lower bounds of X3,i,n = (Xi +Cn)| (Xi < _Cn)' @

precise large deviations with nonnegative and dependent It is easy to check that X,;  + X, +X;;, =X,

random variables. for 1<i<n, n>1 and X1,1,n1 X1,2,n" e len'n
bounded by C, for each fixed n>1. If {Xn,n 21} are
WOD random variables, then {X,; ,1<i<n},
{Xyml<i<n}, {X;;,,1<i<n} arealso WOD

random variables for each fixed Nn>1 by Lemma 1.
Lemma 2[1] Let p=>1 and {X n 21} be a

I. INTRODUCTION

presented some basic renewal theorems for a random walk

are
I1. DEFINITION OF A WOD SEQUENCE

Definition 1[1] For the random variables {X,,n >1}, if
there exists a finite real sequence {gu (n), nz 1} satisfying

foreach N>1 and forall X e(—oo,oo) 1<i<n
sequence of WOD random variables with E | X, |P<oo

P(X, > %, X, >X,+, X, > X, )< gy (n HP (X, >x;), for each n>1. Assume further that EX_ =0 for each
i=1

then we say that the {X N2 1} are widely upper orthant
dependent (WUOD, in short); if there exists a finite real
sequence {gL(n), n=> 1}satisfying for each N >1and for all

X, €(~00,00),1<i<n

N>1 when P=>2. Then there exist positive constant
C,(p) and C,(p) dependingonlyon p such that

£ X[ <IC(P+Co(POMIYEI X, I
1<p<2,

n

P(X, <%, X, x50, X, <% )< g (M TPOX; < x). ™

n P
= E> X,
i=1

n
<C EIX "+
then we say that the {X,,n>1} are widely lower orthant i p)izzl" %]
dependent (WLOD, in short); if they are both WUOD and V p=2.
> . n 2
WLOD, then we say that the {X,,n>1} are widely Cz(p)g(n)(zElxi |2J
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1. MAIN RESULTS Theorem 2 Let {X,,n>1} be a sequence of WOD

random variables and {X 1<i Sn,nzl} be defined

1,i,n?

Theorem 1  Let {xn,nzl} be a sequence of WOD N
. 2 2

random variables with EX, =0 for each n>1, if there by (1). Define B = D EX;’,n>1. Then for any

i=1

exist a sequence of positive numbers {Cn N2 1} such that 2

€
|Xi|<c; foreach i>1,thenforany t>0,n>1, ¢ >0suchthat &< 2Cn and n>1,

n

Eexp{tizz; xi} <g(n exp{ Ze‘° EX, } P[g(xu,n ~EXy;0)2 EJ < g(n)eXp{— 2;; > }

n 82
P Xiin—EX{ih)S—€|<g(n)exps— :
Proof. It is easy to check that for all XeR , (;( H 1”) j g() p{ 2eB *

X 1 5K _ h 2
e sl+x+2x e’ Thus, by EX;=0,and |X;|<c P(Z(Xl,i,n—Exl.n*gJ<29( )exp{—zg }
e

i=1

for each 1>1, we have

1 . 1 .
) o Ll [ 2 t\x,\]: 1, [ 2 t\x,\]
Be™ <I+EX;+ 2t E|Xe 1+ 2t E|Xe Proof. By Markov’s inequality and Corollaryl, we have that

1 1 fort>0
sl+2 t%e“EX,’ Sexy{z t?e"“EX, }

P[Zn: (Xyi0 =~ EXyy)2 gj

forany t >0, by Lemma 1,we can see that i=1

E exp{tzn: xi} < g(n)ﬁ Ee™ <e“E exp{tzn: (X410 = EXyy )}
i=1 i i=1
exp{ Zem EX, }

<e*g(n exp{ e ZEX }
Corollary 1 Let {X,,n>1} beasequence of WOD

. - . t2
random variables and {lei’n A<i1<n,n 21} be defined by _ g(n)e X ;{_ te 4 Eezmn an},
(1). Thenforany t>0 and n=>1,

Eexp{tZ(Xl,i,n_Exl,i,n)} Taking t= ng ,and noting that 2tc, <1,so
— eB,
g2t EX t? s g 2 &g’
<g(n exp Z g(n)expi—te+—e”*B*t < g(n)expy———¢.
2 2eB,
since {— xm,nzl} is a sequence of WOD random

Proof. It is easily seen that
{lei'n —EXy;,A<i<n,n 21} are still WOD random

variables with P(Z (leiyn - Eleiyn)S —5]
‘xl,i,n —EX,;.[<2¢c, foreach 1<i<n,n>1py

Theorem1,we have = [i (— Xiin~ E(— Xiin ))2 €j
EEXp{tzn:(Xl,i,n - Exl,i,n)} '

i=1

2
) ) < g(n)exp - 2¢B 2
< g(n)exp{%emn z E(Xl,i,n —EXyin )z} “

i=1

variables,so

2

< g(n)exp{%e”c" Zn: EXiZ}.

n 82
X —EX =€ |<2g(n)exps— :
;( Li,n 1,|,n* SJ g( ) p{ ZEB 2}

- n
i=1
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Corollary 2 Let {X I = 1} be a sequence of identically

distributed WOD random variables and
{Xlli’n,lSi < n,n21} be defined by (1). Then for any
eEX,”

£>0 suchthat ¢ <
2C

n

<

p[i

i=1

ne’
g(n)e X %_ 2% E)f }’

(xl,i,n - Exl,i,n)Z ngj

n

Z(Xl,i,n - Exl,i,n)

i=1

<

—nsj < g(n)eXp{—

2

&
2eEX,’

n

2

i=1

(X, - Exm* > ng] < 2g(n)exp{—

Theorem 3 Let {X,,n>1} be a sequence of identically
distributed WOD random variables and
Xml<i<nn>1} q=23, be defined by (1).
Assume that there existsa ¢ >0 statisfying

supEe”™ <M, <o, where M is a positive constant
fti<o

depending onlyon ¢ . Thenforany &>0and t e (0,d],

g,i,n?

P13 Xy X))

<G (P)+C,(p)g(M]2M G
- £2nt? '

Proof. For (=2, by Markov’s inequality and Lemma2,
we can see that

P(% | i(xz,i,n _Exz,i,n) > 5]

i=1

n 2

Z(Xz,i,n - EXz,i,n)

i=1

E

<
82n2
G(P) +Co (P I(MINE(X,,, — EX 21n)°
- 82n2
< [C(p) +C, (P)g(MIEX ®21n
B e’n
Therefore, it remains only to estimate EX ?21n. Here, we

will adopt the method in[6,Lemma4].By that,it is easy to find
that

EX 2510 < 2M, e,

t2

SO

ne’
2eEX,” |’

}.
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P[% | Zn:(xz,i,n _EXZ,i,n) > Ej

_[C(p) +C,(P)g(M]2M e ™
B gnt? '
For Q = 3 ,the proof is similar to the case for =2 and is
omitted.
Corollary 3  Let {Xn, n= 1} be a sequence of identically
SIX

distributed WOD random variables with Ee®™! <o for
some O >0 .Let

X iml<i<nn>1}q=23, be defined by (1), Then
forany £>0,

P(% | _Zn:(xq,i,n _Exq,i,n) |Z g]

< [C(p) +C,(P)g(n)]2Ee™ o
- &’ns?
Proof It is easily seen that

sup Ee™ < Ee?™ = M ; < oo ,which implies the desired
<5

results immediately from Theorem3.
Theorem 4  Let {X,,n>1} be a sequence of

identically distributed WOD random variables with
Ee’™ <o for some >0, and {c,,n>1} be a
sequence of positive numbers such that

(enEXf

g,i,n?

O<c, <

n =

1/3
] forsome nz=n,,

where n, is a  positive integer. Define

&, = \/Zé‘eEXlZCn /n . Thenfor n>n,,

P[#i(xi—Exmzsenj

31Xyl '
<o () + (AR +C(PIOMIEE™ ).
o°eEX c,
Proof It is easy to check that 2g,C, <eEX,” and

ne,’12eEX =&
Corollary3 that

., - It follows from Corollary2 and

P l|z“(xi—|5xi)|zagnj
n o
1 &
<P _|Z(Xlin_EX1in)|Z€nj
nss "
1 n
+P HlZ(XZm _EXZ,i,n)|2 gn}
i=1
1 n
+P HlZ(XSm _EXS,i,n)l2 gnj
i=1
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2
ne

© 2eEX/

LAC(p)+ C,(p)g(n)JEe”™ e
2 2

g, no

[C.(p)+C,(p)g(n)]Ee™™
5%EXc,

<2g(n)exp

=2 g(n)+
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