International Journal of Engineering and Applied Sciences (IJEAS)

ISSN: 2394-3661, Volume-06, Issue-12, December 2019

Implementation of garbage collection java application on
sun java real time operating system mobile embedded
application

Amandeep Kaur, Balpreet Kaur, Gurpreet Kaur

Abstract- Java possesses many advantages for embedded
system development, including fast product deployment,
portability, security, and a small memory footprint. As Java
makes inroads into the market for embedded systems, much
effort is being invested in designing real-time garbage
collectors. Memory allocation can be done in constant time
and sweeping can be performed in parallel by multiple
modules. In this paper, garbage collection java application
has been implemented on real time system mobile embedded
application.

Key Words— Security, garbage Collection, Embedded
Systems.

1. INTRODUCTION

The need of automated garbage collection, or automated
memory management, in terms of time and memory is
oblivious. If used properly it will cut development time in
projects, the bigger and more complex project, the more
time and time is money. The ultimate garbage collector, or
automated memory management scheme, should allocate
the exact amount of memory needed when it is needed. It
should also reclaim memory the moment it becomes
useless to the running program.

2. COMPARISON OF GARBAGE COLLECTION
TECHNIQUES WORST CASE EXECUTION TIMES

Garbage collection performances vary when we use
reference counting technique. Generational garbage
collection worst case allocation characteristics are different
from reference counting.

Table 1: Comparison

Worst Case | Worst Case | Generality
Allocation | Recycling

Malloc/Free | Walk free Constant high
list

18

Garbage Constant Size of high
Collection memory

(typically)
Reference Walk free Size of Med(cycles)
Counting list memory
Pool Analysis | Constant Constant low

3. IMPLEMENTATION

The java application has been executed on sun java real
time mobile embedded application. The application is
made run on the simulator of default color phone. The
operating system on which the application is working is
Symbian real time operating system.

IlﬂSunJa'.-a(Tl‘vﬂ] Wireless Toolkit 25,201 for CLOC o |G 8
File Edit Project Help

LC New Project ... b Open Project ...

(s lﬂg V‘ \j‘ Clear Console

Device: |DefaulColarPhane

U] Open Project

sl

Praject Date
CityGuide B[18/1012:34PM Location API demonstration,
ball 6/18/10 12:38 M No Description Found

n AN AN M Kla Dy

Description

o
-evirkian Earind

Shaw avalable demos

(i

Fig -1: Opening a project on real time java mobile
embedded system

www.ijeas.org




International Journal of Engineering and Applied Sciences (IJEAS)

] +3550000 - DefaultColoPhone. [ | B[R]
MIDlet View Help
0 Odm
Fall ABC i) L
Simple Example |
H
Tatd Memary 2097152

@ Sun Java(TM) Wireless Toolkit 23.2 01 for CLDC - gar
File Edit Project Help

Device: 'DafaultCUIUrPhone vl

LE New Praject ... E:’ Open Praject . ‘ b] Settings .., Lok, Build %1) R

Running with locale; English_United States.1252
Running in the identified_third_party security domain
Total memoryis: 2097152

Initial free memary. 2016008

Free memary after garbage collection: 2021738

Free memory after allocation: 2004464

Memary used by allocation: 17324

Free memory after collecting discarded Integers: 2021788

-

]

1

\ |m M =~
A = \
S— —

~

| ‘ Qe || Jow

Fig -2: Executing java application on real time mobile
embedded application

4. RESULTS

The screenshot of the garbage collection java application
implementing on mobile embedded symbian real time
operating system shows the free memory before and after
garbage collection. During the process, 48550 bytes have
been collected and memory freed from garbage data.

19

ISSN: 2394-3661, Volume-06, Issue-12, December 2019

@ Sun Java(TM) Wireless Toolkit 25,2 01 for CLDC - gar
File Edit Project Help

LE‘ New Project .., E_‘j’ Open Project ., ‘ b] Settings ., li50: Buid g) Run

q_’\j Clear Cansdle

Devic: DefautColahone .

Project"gar" lnaded

Froject setings saved

Building"gar"

Build complete

Running with storage root C.\UsersAMAN 2Zmewtid2 5. 2appdbiDefauliColorPhone
Running with locale: English_United States. 1252
Running in the identified_third_pary security domain
Total memaryis: 2087152

Inifial free memory: 2016008

Frae memary after garbage collection: 2021788

Free memory after allocation: 2004464

Memaryused by allocation: 17324

Free memory after collecting discarded Integers: 2021788
Execution completed.

3635003 bylecodes executed

36756 thread switches

1668 classes inthe system (including system classes)
15046 dynamic objects allocated (366700 bytes)

4 garbage collections (485500 bytes collzcted)

5. CONCLUSION

The use of the real time garbage collection together with
the extensions defined in the real time specifications for
java makes it possible to provide a more straightforward
and simpler development of real time code using java.
Even systems that do not require dynamic memory
management within real time code becomes simpler, such
that higher productivity and higher software quality can be
expected. Such a system provides the advantage that made
java so successful to the developer of real time systems.

REFERENCES

[1] Adrienne Bloss. Update analysis and the efficient implementation
of functional aggregates ,pages 26-38.ACM Press, 1990.

[2] Paul R. Wilson. Uniprocessor garbage collection techniques.
Submitted to ACM Computing surveys 1994.

[3] Yoo C.Chung and Soo-Mook Moon.Memory allocation with lazy
fits.

[4] Jaques Cohonu and Alexendru Nikolau.Comaprison of compaction
algorithm for garbage collection.ACM transactions on programming
languages and systems,5(4):532-553,0ctober 1983.

[5] Ben Cranston and rick Thomas. A simplified recombination scheme
for the fibonacci buddy systems, pages 331-332.ACM Press ,june
1975.

www.ijeas.org



International Journal of Engineering and Applied Sciences (IJEAS)
ISSN: 2394-3661, Volume-06, Issue-12, December 2019
[6] David Detlefs.Automatic inference of reference-count invariants.

[7] David M.Harland.REKURSIV:Object-oriented computer
arcitecture. Ellis Horwood Ltd.,1998.

[8] Roger Henriksson. Scheduling garbage collection in embedded
systems. Phd thesis,Lund Institute of Technology,1998.

[9] Daniel S.Hirschberg. A class of dynamic memory allocation
algorithams,pages 615-618. ACM Press , October 1973.

[10] Mark S.johnstone and Paul R. Wilson. The memory fragmentation
problem :solved ?October 18,1997

Amandeep Kaur, Balpreet Kaur, Gurpreet Kaur: Assistant Professor,
Dept. Of CSE, BBSBEC, FGS, Punjab, India

20 wWww.ijeas.org



