

 International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-06, Issue-12, December 2019

 18 www.ijeas.org

Implementation of garbage collection java application on

sun java real time operating system mobile embedded

application

Amandeep Kaur, Balpreet Kaur, Gurpreet Kaur

Abstract- Java possesses many advantages for embedded

system development, including fast product deployment,

portability, security, and a small memory footprint. As Java

makes inroads into the market for embedded systems, much

effort is being invested in designing real-time garbage

collectors. Memory allocation can be done in constant time

and sweeping can be performed in parallel by multiple

modules. In this paper, garbage collection java application

has been implemented on real time system mobile embedded

application.

Key Words— Security, garbage Collection, Embedded

Systems.

1. INTRODUCTION

The need of automated garbage collection, or automated

memory management, in terms of time and memory is

oblivious. If used properly it will cut development time in

projects, the bigger and more complex project, the more

time and time is money. The ultimate garbage collector, or

automated memory management scheme, should allocate

the exact amount of memory needed when it is needed. It

should also reclaim memory the moment it becomes

useless to the running program.

2. COMPARISON OF GARBAGE COLLECTION

TECHNIQUES WORST CASE EXECUTION TIMES

Garbage collection performances vary when we use

reference counting technique. Generational garbage

collection worst case allocation characteristics are different

from reference counting.

Table 1: Comparison

 Worst Case

Allocation

Worst Case

Recycling

Generality

Malloc/Free Walk free

list

Constant high

Garbage

Collection

Constant Size of

memory

(typically)

high

Reference

Counting

Walk free

list

Size of

memory

Med(cycles)

Pool Analysis Constant Constant low

3. IMPLEMENTATION

The java application has been executed on sun java real

time mobile embedded application. The application is

made run on the simulator of default color phone. The

operating system on which the application is working is

Symbian real time operating system.

Fig -1: Opening a project on real time java mobile

embedded system

 International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-06, Issue-12, December 2019

 19 www.ijeas.org

Fig -2: Executing java application on real time mobile

embedded application

4. RESULTS

The screenshot of the garbage collection java application

implementing on mobile embedded symbian real time

operating system shows the free memory before and after

garbage collection. During the process, 48550 bytes have

been collected and memory freed from garbage data.

5. CONCLUSION

The use of the real time garbage collection together with

the extensions defined in the real time specifications for

java makes it possible to provide a more straightforward

and simpler development of real time code using java.

Even systems that do not require dynamic memory

management within real time code becomes simpler, such

that higher productivity and higher software quality can be

expected. Such a system provides the advantage that made

java so successful to the developer of real time systems.

REFERENCES

[1] Adrienne Bloss. Update analysis and the efficient implementation

of functional aggregates ,pages 26-38.ACM Press, 1990.

[2] Paul R. Wilson. Uniprocessor garbage collection techniques.

Submitted to ACM Computing surveys 1994.

[3] Yoo C.Chung and Soo-Mook Moon.Memory allocation with lazy

fits.

[4] Jaques Cohonu and Alexendru Nikolau.Comaprison of compaction

algorithm for garbage collection.ACM transactions on programming

languages and systems,5(4):532-553,October 1983.

[5] Ben Cranston and rick Thomas. A simplified recombination scheme

for the fibonacci buddy systems, pages 331-332.ACM Press ,june

1975.

 International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-06, Issue-12, December 2019

 20 www.ijeas.org

[6] David Detlefs.Automatic inference of reference-count invariants.

[7] David M.Harland.REKURSIV:Object-oriented computer

arcitecture. Ellis Horwood Ltd.,1998.

[8] Roger Henriksson. Scheduling garbage collection in embedded

systems. Phd thesis,Lund Institute of Technology,1998.

[9] Daniel S.Hirschberg. A class of dynamic memory allocation

algorithams,pages 615-618. ACM Press , October 1973.

[10] Mark S.johnstone and Paul R. Wilson. The memory fragmentation

problem :solved ?October 18,1997

Amandeep Kaur, Balpreet Kaur, Gurpreet Kaur: Assistant Professor,

Dept. Of CSE, BBSBEC, FGS, Punjab, India

