Asymptotic estimates for finite-time ruin probability of a bidimensional risk model based on entrance process

Zhankui Wang

Abstract—Consider a bidimensional risk model based on entrance process with constant force of interest in which the claim size from the same business are heavy-tailed and pairwise strong quasi-asymptotically independent, the two counting processes of different business satisfy a certain dependence structure. A precise asymptotic formula for the finite-time ruin probability is obtained.

Index Terms—Bidimensional risk model; ruin probability; independence; asymptotic formula MSC(2010): 60B12, 91B30

I. INTRODUCTION

We know that the literature [1] put forward into a new model (LIG model) based on an entrance process and discussed asymptotic normality of the risk process. Furthermore, some scholars got some conclusions through the study of the LIG model. [2–4] investigated the one-dimensional risk model based on entrance processes. Recently, more attention has been paid to multi-dimensional risk models, especially bidimensional ones. [5] discussed the precise large deviations based on the entry process risk model in the independent case of multi-risk. [6] studied the ruin probability of a bidimensional risk model based on entrance processes with constant interest rate.

In this paper, we investigate finite-time ruin probability of a bidimensional risk model based on entrance processes, in which an insurance company operates two kinds of business. Suppose that the initial fund for the \(i-\)th class is \(x_i\) and \(S_j^i\) is entry time of the \(j-\)th policy with \(0 < S_1^i < S_2^i < \cdots\) and \(S_j^i = \sum_{k=1}^{j} \theta_k^i\), \(i = 1, 2\). \((N_1(t), N_2(t))\) is a bidimensional renewal counting process. Here, \(N_i(t) = \sup\{j \geq 0: S_j^i \leq t\}, t \geq 0, i = 1, 2\). For more detail of a bidimensional renewal counting process, we refer the reader to Examples 3.1 and 3.2 of [7]. Denote the mean function by \(\lambda_i(t) = EN_i(t)\) with \(\lambda_i(0) = 0\) and \(\lambda_i(t) < \infty\), and define the set \(\Lambda_i = \{t > 0: \lambda_i(t) > 0\} = \{t > 0: P(S_t^i \leq t)\}. If we set \(t^*_i = \inf\{t > 0: P(S_t^i \leq t)\}\), then it is easy to see that \(\Lambda_i = [t^*_i, \infty]\) if \(P(S_t^i = t^*_i) > 0\); or \(\Lambda_i = (t^*_i, \infty]\) if \(P(S_t^i = t^*_i) = 0, i = 1, 2\). We denote the intersection set by \(\Lambda = \Lambda_1 \cap \Lambda_2\). Let the validity time of the \(j-\)th policy be \(\{C_j^i, j = 1, 2, \cdots\}\) with probability \(P(C_j^i = \alpha_j^i) = p_j^i, \ell = 1, 2, \cdots, K_j^i\), where they are independent and identically distributed. The premium is \(f_i(C_j^i)\) and \(f_i(\cdot)\) is a strictly increasing function. \(D_j^i\) is claim time of the \(j-\)th policy and independent and identically distributed function \(H_j(\cdot)\). \(X_j^i\) is the \(j-\)th claim size and identically distributed function \(F_j(\cdot)\). Suppose that \(X_j^i\) have the same distributions \(X_j^i\). For any time \(t \geq 0\), the surplus process of the insurer can be described as

\[
\begin{align*}
R_i(t) &= \left(x_i e^{\delta t} + \sum_{j=1}^{N_i(t)} f_1(C_j^i) e^{\delta(t-S_j^i)} \right) \\
R_2(t) &= \left(x_2 e^{\delta t} + \sum_{j=1}^{N_2(t)} f_2(C_j^2) e^{\delta(t-S_j^2)} \right) \\
&- \left(\sum_{i=1}^{N_i(t)} X_j^i e^{\delta(t-S_j^i-D_j^i)} I_{[S_j^i+D_j^i \leq s \leq C_j^i]} \right) \\
&- \left(\sum_{j=1}^{N_2(t)} X_j^2 e^{\delta(t-S_j^2-D_j^2)} I_{[S_j^2+D_j^2 \leq s \leq C_j^2]} \right),
\end{align*}
\]

where \(\delta > 0\) denotes the constant force of interest. We further assume that \(\{X_j^1, j \geq 1\}, \{X_j^2, j \geq 1\}\) and \(\{(N_1(t), N_2(t)\), \(i, j \geq 1\)\} are mutually independent.

Define the finite-time ruin probabilities corresponding to risk model (1) as

\[
\Psi(x_1, x_2; t) = P(\tau_{\max}(x_1, x_2) \leq t)
\]

\[
= P\left(\bigcap_{i=1}^{2} R_i(s) < 0, 0 \leq s \leq t \right),
\]

where

Zhankui Wang, School of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu, China, Mobile No. 18894575336

International Journal of Engineering and Applied Sciences (IJEEAS)
ISSN: 2394-3661, Volume-6, Issue-9, September 2019
Asymptotic estimates for finite-time ruin probability of a bidimensional risk model based on entrance process

\[
\tau_{\text{max}}(x_1, x_2) = \inf\{t : \max\{R_1(t), R_2(t)\} < 0 | R_i(0) = x_i, i = 1, 2\}.
\]

In the rest of this paper, Section 2 presents our main results after introducing necessary preliminaries, Section 3 gives some lemmas, and Sections 4 gives the proofs of the main results.

II. PRELIMINARIES AND MAIN RESULTS

Definition 1. For a distribution \(F \), denote its tail distribution by \(\bar{F} = 1 - F \) and its upper Matuszewska index by

\[
J^*_F = -\lim_{x \to \infty} \log \frac{\bar{F}_*(x)}{\log x},
\]

where

\[
\bar{F}_*(x) = \liminf_{x \to \infty} \frac{\bar{F}(xy)}{\bar{F}(x)} \text{ for } y > 0,
\]

which can be found in [8]. A distribution \(F \) is said to be dominatedly-varying-tailed, denoted by \(F \in D \), if for every fixed \(y \in (0, 1) \), \(\bar{F}_*(x) < \infty \). Clearly, \(F \in D \). A distribution \(F \) is said to be long-tailed, denoted by \(F \in L \), if for every fixed \(y \in R \), \(\bar{F}(x+y) \bar{F}(x) \) as \(x \to \infty \), that is,

\[
\lim_{x \to \infty} \frac{\bar{F}(x+y)}{\bar{F}(x)} = 1,
\]

which can be found in [9].

Definition 2. If real valued random variables \(X_i, i \geq 1 \) with distribution functions \(F_i, i \geq 1 \) satisfy for any \(i \neq j \)

\[
\lim_{\min\{x_i, x_j\} \to \infty} P(X_i > x_i | X_j > x_j) = 0,
\]

Then we say \(X_i, i \geq 1 \) are pairwise strong quasi-asymptotically independent (PSQAI), which can be found in [10].

Theorem 1. Consider the bidimensional risk model (1). Suppose that claim sizes, \(\{X_j, j \geq 1\} \) be PSQAI random variables with common distribution \(F_j \in D \cap L \), \(i = 1, 2 \). If \(N_i(t) \) and \(N_j(t) \) are arbitrarily dependent, then for any fixed \(\varepsilon > 0 \) with \(E[N_i(\varepsilon)N_j(\varepsilon)] > 0 \). Then for \(t \in \Lambda \cap [\varepsilon, T] \), we have

\[
\psi(x_1, x_2; t) \leq \int_0^t \int_0^2 \left[\sum_{j=1}^{K^1} \sum_{i=1}^{s^1(j)} P^i_{j} \int_0^{\theta_j^1(t+u_n)} \bar{F}_j^i(x e^{\theta_j^1(t+u_n)} \nu_2^i) dH_j^i(y) \right] E[N_i(\varepsilon)N_j(\varepsilon)] d\varepsilon.
\]

\[(2) \]

III. SOME LEMMAS

The following lemma is an immediate corollary of Theorems 3.2 and 3.4 of [11].

Lemma 1. Let \(\{N_i(t), t \geq 0\} \) and \(\{N_j(t), t \geq 0\} \) be two renewal counting processes with their inter-arrival time \(\theta_1^1, \theta_2^2, \ldots \), and \(\theta_1^1, \theta_2^2, \ldots \), respectively. For any integer \(i \geq 1 \), denote by \(S_i^1 = \sum_{j=1}^{i} \theta_j^1 \) and \(S_i^2 = \sum_{j=1}^{i} \theta_j^2 \) the corresponding arrival times. If \(\{(\theta_j^1, \theta_j^2); i \geq 1\} \) is a sequence of i.i.d. random vectors, then it holds for any \(u_i \geq 0 \) and \(u_j \geq 0 \)

\[
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} P(S_i^1 \leq u_i, S_j^2 \leq u_j) = E(N_i(u_i)N_j(u_j)).
\]

The following lemma comes from Theorem 2.1 of [10]

Lemma 2. Assume that \(\{X_j, 1 \leq j \leq n\} \) are \(n \) real-valued random variables with functions of distribution \(F_j, 1 \leq j \leq n \). If \(\{X_j, 1 \leq j \leq n\} \) are PSQAI and \(F_j \in D \cap L \) and \((c_1, \cdots, c_n) \in [a, b]^n \). Then

\[
P\left(\sum_{j=1}^{n} c_j X_j > x \right) \leq \sum_{j=1}^{n} P(c_j X_j > x).
\]

The following lemma comes from proposition 2.2.1 of [9]

Lemma 3. If a distribution \(F \in D \), then for any \(\beta > J^*_F \), there exist two positive constant \(C \) and \(D \) such that for all \(x \geq y \geq D \),

\[
\frac{\bar{F}(y)}{\bar{F}(x)} \leq C \frac{x^\beta}{y^\beta}.
\]

Lemma 4. Under the conditions of Theorem 1, it holds that uniformly for \(t \in \Lambda \cap [\varepsilon, T] \),

\[\left(\sum_{i=1}^{N_i(t)} X_i^1 e^{-\delta(S_i^1+D_i^1)} I_{(S_i^1+D_i^1) \leq x_1} \right) \leq \int_0^t \left[\sum_{i=1}^{N_i(t)} X_i^2 e^{-\delta(S_i^2+D_i^2)} I_{(S_i^2+D_i^2) \leq x_2} \right] d\varepsilon \]

\[\sum_{j=1}^{N_j(t)} \left[\int_0^t \left[\sum_{i=1}^{K^1} \sum_{n=0}^{s^1(j)} P^i_{j} \int_0^{\theta_j^1(t+u_n)} \bar{F}_j^i(x e^{\theta_j^1(t+u_n)} \nu_2^i) dH_j^i(y) \right] E[N_i(\varepsilon)N_j(\varepsilon)] d\varepsilon \right]. \]

\[(3) \]

Proof. For arbitrarily fixed positive integer \(M \), we split the left-hand side of (3) into three parts as

\[
\left(\sum_{m=1}^{M} \sum_{n=m+1}^{M} \sum_{n=M+1}^{M} \sum_{m=M+1}^{M} \sum_{m=M+1}^{M} \sum_{n=M+1}^{M} \right)
\]

www.ijeas.org
\[\times P\left(\sum_{i=1}^{m} X_i^1 e^{-\delta(S_i^1+D_i^1)} I_{(S_i^1+D_i^1, \cdot, \cdot, \cdot, C_i^1)} > x_1, \right. \]
\[\sum_{j=1}^{n} X_j^2 e^{-\delta(S_j^2+D_j^2)} I_{(S_j^2+D_j^2, \cdot, \cdot, \cdot, C_j^2)} > x_2, \]
\[N_i(t) = m, \quad N_j(t) = n \]
\[= \sum_{l=1}^{3} I_l(x_1, x_2; t) - I_4(x_1, x_2; t). \] (4)

We first deal with \(I_1(x_1, x_2; t) \). Write \(B_m^i = \{ 0 \leq z_1^i \leq \cdots \leq z_m^i \leq t < z_{m+1}^i \} \), and \(B_m^{i+1} = \{ 0 \leq \cdots \leq z_m^{i+1} \leq t < z_{m+1}^{i+1} \} \). Since the three sequences \(\{ X_i^j, j \geq 1 \}, i = 1, 2, \) and \(\{ (N_i(t), N_j(t)^T, t \geq 0) \} \) are mutually independent, and using Lemma 2, we have that uniformly for \(t \in \Lambda \cap [\varepsilon, T] \)
\[I_1(x_1, x_2; t) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \prod_{i=1}^{m} P\left(\sum_{j=1}^{n} X_j^i e^{-\delta(S_j^i+D_j^i)} I_{(S_j^i+D_j^i, \cdot, \cdot, \cdot, C_j^i)} > x_1, \right. \]
\[\sum_{j=1}^{n} X_j^2 e^{-\delta(S_j^2+D_j^2)} I_{(S_j^2+D_j^2, \cdot, \cdot, \cdot, C_j^2)} > x_2, \]
\[N_i(t) = m, \quad N_j(t) = n \]
\[= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \prod_{i=1}^{m} P\left(\sum_{j=1}^{n} X_j^i e^{-\delta(S_j^i+D_j^i)} I_{(S_j^i+D_j^i, \cdot, \cdot, \cdot, C_j^i)} > x_1, \right. \]
\[\sum_{j=1}^{n} X_j^2 e^{-\delta(S_j^2+D_j^2)} I_{(S_j^2+D_j^2, \cdot, \cdot, \cdot, C_j^2)} > x_2, \]
\[\left. N_i(t) = m, \quad N_j(t) = n \right) \]
\[\leq \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left(\sum_{j=1}^{m} P(X_j^1 > x_1, X_j^2 > x_2, N_i(t) = m, \right. \]
\[\left. N_j(t) = n \right) \]
\[= P(X_1^1 > x_1, X_2^2 > x_2) \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} mnP(N_i(t) = m, \right. \]
\[\left. N_j(t) = n \right) \]
\[= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \prod_{i=1}^{m} P(X_i^1 > x_1, X_j^2 > x_2, N_i(t) = m, \right. \]
\[\left. N_j(t) = n \right) \]
\[\leq \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \prod_{i=1}^{m} \sup_{t \in \Lambda [\varepsilon, T]} E(N_i(t)N_j(t)N_i(t)^{N_j(t)^T} > M). \]

We obtain from Hölder’s inequality that
\[\sup_{t \in \Lambda [\varepsilon, T]} E(N_i(t)N_j(t)N_i(t)^{N_j(t)^T} > M). \]
\[\text{Asymptotic estimates for finite-time ruin probability of a bidimensional risk model based on entrance process} \]

Then, by \(F_i \in D, i = 1, 2 \), we have

\[\lim_{M \to \infty} \sup_{\min \{ \alpha, \beta \} \to \varepsilon} \left(\frac{I_2(x_1, x_2; t)}{E(N_1(t))} \right) = 0. \quad (7) \]

\(K_2(x_1, x_2; t) \) can be dealt with in the same way. Thus, we obtain

\[\lim_{M \to \infty} \sup_{\min \{ \alpha, \beta \} \to \varepsilon} \left(\frac{J_2(x_1, x_2; t)}{I_1(x_1, x_2; t)} \right) = 0. \quad (8) \]

Substituting (6) and (8) into (5) leads to

\[\lim_{M \to \infty} \sup_{\min \{ \alpha, \beta \} \to \varepsilon} \left(\frac{I_2(x_1, x_2; t)}{I_1(x_1, x_2; t)} \right) = 0. \quad (9) \]

We next estimate \(I_4(x_1, x_2; t) \). Choose some \(\beta > \max \{ J_{F_1 \varepsilon}^+, J_{F_2 \varepsilon}^+ \} \). According to Lemma 3, uniformly for all \(t \in \Lambda \cap \varepsilon \),

\[\psi(x_1, x_2; t) \leq CP(X^1 > x_1)CP(X^2 > x_2) \]

\[\times E(N_1(t)) \beta \gamma N_2(t) \beta \gamma I_{N_2(T) > M} \],

where \(C \) is some positive constant. Similarly to (8) we obtain

\[\lim_{M \to \infty} \sup_{\min \{ \alpha, \beta \} \to \varepsilon} \left(\frac{I_4(x_1, x_2; t)}{I_1(x_1, x_2; t)} \right) = 0. \quad (10) \]

In the same manner, we can prove

\[\lim_{M \to \infty} \sup_{\min \{ \alpha, \beta \} \to \varepsilon} \left(\frac{I_4(x_1, x_2; t)}{I_1(x_1, x_2; t)} \right) = 0. \quad (11) \]

Substituting (9), (10) and (11) into (4) the desired relation (3) holds uniformly for all \(t \in \Lambda \cap \varepsilon \).

IV. PROOF OF MAIN RESULTS.

Proof of Theorem 1. We first deal with the asymptotic upper bound of \(\psi(x_1, x_2; t) \). By Lemma 4, we have that uniformly for \(t \in \Lambda \cap \varepsilon \),

\[\psi(x_1, x_2; t) \leq \frac{1}{\beta \gamma} \sum_{m=1}^{N_1(t)} X^1 \text{e}^{-\delta(t^1)} I_{|s^1_j, d^1_j| > x_1} \]

\[\leq \frac{1}{\beta \gamma} \sum_{m=1}^{N_1(t)} X^1 \text{e}^{-\delta(t^1)} I_{|s^1_j, d^1_j| > x_1} \]

\[\times \prod_{j=1}^{N_2(t)} X^2 \text{e}^{-\delta(t^2)} I_{|s^2_j, d^2_j| > x_2} \]

\[\times dH_i(y) dE[N_1(u_1)N_2(u_2)]. \quad (12) \]

Then we discuss the asymptotic lower bound of \(\psi(x_1, x_2; t) \). For simplicity, write

\[Z_k(t) = \sum_{i=1}^{N_k(t)} \int_{t^i} f_k(C_k^i) e^{-\delta t^i}, \quad k = 1, 2. \]

For sufficiently large \(N > 0 \), by Lemma 4,
\[F_i \in L, k = 1, 2 \], we obtain that uniformly for
\[t \in \Lambda \cap [\varepsilon, T]. \]
\[\psi(x_1, x_2; t) = \int_0^\infty \int_0^\infty P_i \sum_{j=1}^{N_i(t)} X_j^i e^{-\delta(S_j^i+D_j^i)} I_{[S_j^i+D_j^i \leq C_i^j]} > x_1 + z_1, \]
\[\sum_{j=1}^{N_i(t)} X_j^i e^{-\delta(S_j^i+D_j^i)} I_{[S_j^i+D_j^i \leq C_i^j]} > x_2 + z_2, \]
\[P(Z_i(t) \in dz_1, Z_2(t) \in dz_2) \]
\[\int_0^\infty \int_0^\infty \int_0^2 \sum_{i=1}^{K'} P_i \int_0^{\lambda_i(t-u_i)} F_i(x_i e^{\delta(u+y)}) \]
\[dH_i(y) dE[N_i(u_1)N_i(u_2)] \]
\[\times P(Z_i(t) \in dz_1, Z_2(t) \in dz_2) \]
\[\int_0^\infty \int_0^\infty \int_0^{2} \sum_{i=1}^{K'} P_i \int_0^{\lambda_i(t-u_i)} F_i(x_i e^{\delta(u+y)}) \]
\[dE[N_i(u_1)N_i(u_2)] \]
\[\frac{dH_i(y) dE[N_i(u_1)N_i(u_2)]}{P_i} \]
A combination of (12) and (13) shows that (2) holds uniformly for all \[t \leq T \]

REFERENCES

