Characterization of Argon Plasma Treated Jute Fibre by Using Ultra Violet Visible Spectroscopy

Abstract—Jute fiber, a cellulosic and environmentally friendly fiber is treated with low temperature Argon plasma which is an ionized gas and an environment friendly surface modification technique. In the present study jute fiber was treated with low temperature Argon (Ar) plasma at different discharge power levels (50, 75, and 100 W) and exposure times (5, 10, 15 and 20 min.) with a flow rate of 0.2L/min. Ultraviolet Visible (UV-Vis.) spectra of raw jute and plasma-treated jute fibres at various exposure times with different discharge powers were recorded at room temperature in absorption mode using a spectrophotometer in the wavelength range of 200 to 1100 nm. The absorption spectra were recorded both for raw jute and plasma treated jute at various exposure times with different discharge powers. The UV-Vis. spectroscopic analysis reveals that the band gap of jute increases with the increase of discharge power as well as exposure time.

Index Terms—Spectroscopy, Jute fibre, Plasma treatment, Exposure time and Discharge power.

I. INTRODUCTION

For the study of atomic and molecular structure of any matter, measurement of optical properties is very essential. Spectroscopy is the most powerful tool available for the study of atomic and molecular structure and is used in the analysis of a wide range of samples. Spectroscopy is the branch of science dealing with the study of interaction of electromagnetic radiation with matter (1-3).

When different types of electromagnetic radiation interact with matter, they give different types of spectroscopy. For example, in visible and ultraviolet region, electronic transitions are caused from atoms and molecules and so it is known as electronic spectroscopy (4).

When a ray of monochromatic light, which is composed of photons of a range of wavelengths, incident perpendicularly on the surface of the jute sample a fraction of the photons, is reflected from the surface and the remaining photons enter into the sample. Some of these absorbed within the sample and some transit the sample, emerge from the far side and are lost. Most of those photons that are absorbed in the sample give rise to electron-hole pairs (2 & 5).

In the past few years interest has increased in the use of Low Temperature Plasma (LTP) technique which is a promising approach for surface modifications of human made as well as natural fibres. Plasmas are ionized gases. An ionized gas consists mainly of positively charged molecules or atoms and negatively charged electrons. A gaseous complex that may be composed of electrons, ions of both polarity, gas atoms and molecules in the ground or any higher state of any form of excitation as well as of light quanta is referred to as plasma (6). The ionization degree can vary from 100 % (fully ionized gases) to very low values (partially ionized gases). The presence of a non-negligible number of charge carriers makes the plasma electrically conductive so that it responds strongly to electromagnetic fields. Plasma therefore has properties quite unlike those of solids, liquids or gases and is considered to be a distinct state of matter. As a type of environment friendly physical surface modification technology, LTP treatment is one of the methods used to modify surfaces in a dry process. Advantages of this technique, compared to a conventional wet process, are: (i) because of the very thin treatment layer, only the surface is modified without interfering the bulk properties and (ii) the process is simpler, fewer steps and less time are required, involving no chemicals.

The study of polymers has become an expanding field of scientific and industrial interest. Naturally occurring and synthetic polymers are found very useful to mankind (7). Jute fibre lies in the category of naturally occurring polymers, which is abundantly available in our country. Jute is a golden fibre as well as a major cash crop of Bangladesh. A great advantage of jute fibre is that, it is environment friendly natural fibre. This natural fibre earns a lot of foreign currency by its export and its various products. Jute plays a very important role in the socio-economic activities of Bangladesh. Prospect for producing a wide variety of jute products and thus maximum utilisation of jute in the possible fields of textile sectors as well as electrical equipment is very encouraging. At present jute is facing tough competition from the convenient and competitive synthetics counter parts in world market. The only way to save jute is through its uses in various diversified ways. Hence for better performability and to explore diverse use of jute study of optical properties of jute fibre is very important. From this study we found the values of optical band gap of both raw and LTP treated jute fibres. Also from these values of band gap one can use jute fibre in power transformer, rotating machines, circuit breakers, electrical cables, power capacitors and many electronic as well as electromechanical equipment simultaneously with other materials having the same electrical parameters.

Md. Masroor Anwer, Principal Scientific Officer, Textile Physics Division, Bangladesh Jute Research Institute, Dhaka-1207, Bangladesh, Cell No. +8801552342233
Md. Zobaidul Hossen, Scientific Officer, Microbiology Department, Bangladesh Jute Research Institute, Dhaka-1207, Bangladesh Selina Akhter, Scientific Officer, Biochemistry Department, Bangladesh Jute Research Institute, Dhaka-1207, Bangladesh
Neaz Morshed, Scientific Officer, Pilot Plant and Processing Division, Bangladesh Jute Research Institute, Dhaka-1207, Bangladesh
Pulak Talukder, Scientific Officer, Mechanical Processing Division, Bangladesh Jute Research Institute, Dhaka-1207, Bangladesh
Ashraful Alam, Scientific Officer, Mechanical Processing Division, Bangladesh Jute Research Institute, Dhaka-1207, Bangladesh
Md. Ariful Islam, Scientific Officer, Pilot Plant and Processing Division, Bangladesh Jute Research Institute, Dhaka-1207, Bangladesh
II. MATERIALS AND METHODS

A. Low Temperature Plasma Treatment

Jute fibres (Corchorus Olitorius or Tossa jute) were collected from the local market in Bangladesh. The fibres were introduced into a bell jar type capacitively coupled glow discharge reactor as shown in figure 1.

To sustain a glow discharge i.e. for getting proper and uniform plasma, the conductive electrodes are separated 0.035 m apart from each other. In order to exposed all through uniform LTP treatment on the samples surface, the fibres (length of each fibre: 0.08 m) were inserted in between the two metallic electrodes by a carrier. After placing jute fibres between pair of electrodes, the glow discharge chamber was evacuated by a rotary pump at a pressure of 1.33 Pa. Ar was considered as plasma gas for treating the jute fibre. In all treatments, both process gases were introduced separately into the reaction chamber by a flowmeter at a flow rate of 0.2 L/min. which is maintained by a needle valve. The discharge powers were adjusted at 50, 75 and 100 W at a line frequency of 50 Hz with the duration of exposure times of LTP treatment of fibres were 5, 10, 15 and 20 min. Figure 2 shows a flow chart of a plasma treatment system which was used in this experiment.

B. Sample Preparation

In preparing the samples, both raw and plasma treated jute fibres were cut into small pieces of sizes of about 1.0-2.0 mm. By mortar and pestle these small pieces of jute were ground, crushed and mixed in order to convert into powder form. Finally, the jute powders were sieved by a very fine and thin net to make the powder finer. The powdered form jute of about 200 mg. was then put in a specially prepared high-pressure die. In order to make the tablets from jute powder, a high pressure (14000 psi) was applied by a hydraulic press (Model: X30659, 0-16000 psi, Mold Pressure, P.S.I. 1" and 5/4" Mold, Will Corporation, NY, USA). The diameter and the thickness of each equipped tablet was 13.5 and 1.5 mm respectively. In this way twenty five types tablets (one tablet was for raw jute and another twelve were for LTP treated jute) were prepared with treated jute samples of different discharge powers and exposure times. All the tablets were oven-dried at 100 °C for 20 minutes before characterization of the samples.

C. Ultraviolet visible spectroscopic analysis

The UV-Vis. spectra of raw jute and plasma-treated jute fibres at various exposure times with different discharge powers were recorded at room temperature in absorption mode using a Shimadzu UV-1601 spectrophotometer (Shimadzu, Tokyo, Japan), in the wavelength range of 200 to 1100 nm. The absorption spectra were recorded both for raw jute and plasma treated jute (tablet, thickness: 1.50 mm) at various exposure times with different discharge powers. Figure 3 show the overview of UV-Vis. spectrophotometer which was used in this experiment.

III. RESULTS

Absorbance vs. wavelength curves of raw jute and LTP treated jute with Ar gas at various discharge powers (50, 75 and 100 W) and exposure times (5, 10, 15 and 20 min.) are presented in figure 4. It is seen from figure 4 that in the higher wavelengths (700-1100 nm) the absorption is high and almost constant. But, from 700 to 600 nm the absorption level falls sharply. Again, from 600-200 nm the absorption remains almost constant at this fallen level.
The absorption coefficient, α, was calculated from the absorbance data of figure 5 using the relation $\alpha = 2.303 \frac{A}{d}$ (8), where A is the absorbance and d is the thickness of the jute tablet. The spectral dependence of α as a function of photon energy, $h\nu$ (where, h is the Planck constant and ν is the frequency, $\nu = \frac{c}{\lambda}$, where, c is the velocity of light and λ is the wavelength of light) is shown in figure 6 for Ar plasma. The dependence of α on $h\nu$ helps to measure the band gap E_g. From figure 5 the optical band gap, E_g, is determined from the intercept of the linear part of the curves extrapolated to zero α in the energy axis. In this way, the values of E_g are obtained for the raw jute and all LTP treated jute samples.

Figure 6(a) shows the band gap vs. discharge power at various exposure times and the figure 6(b) shows the band gap vs. treatment time at various discharge powers of LTP treated jute.

It is seen from the figures 6(a) and 6(b) that E_g of jute increases with the increase of both exposure time as well as discharge power. The reasons behind the increase of E_g with the increase of exposure time and discharge power may be explained as follows.
IV. DISCUSSION

Chemically jute possesses high content of semicrystalline and amorphous materials, such as cellulose, hemicellulose and lignin. Moreover, due to the presence of the hydroxyl and carboxyl groups on the fibre surface and in the amorphous region, the jute fibres can absorb moisture from the atmosphere under standard conditions of temperature and pressure (9). Therefore, the jute are hygroscopic as well as hydrophilic in nature. When jute is exposed to LTP condition, energetic charged particles inside the plasma are able to interact chemically with the surface to be treated. Such interactions can also affect the material properties and the moisture content of the treated jute decreases due to the surface modification of the jute fibres. In the LTP process, the water (H₂O) dissociates into H and OH species by energetic gaseous ion bombardment. The temperature sensitive jute were dried more effectively in plasma without damaging its constituents and also improved the crystallinity of jute (10). Therefore, Eᵢ increases with an increase of exposure times as well as discharge powers.

ACKNOWLEDGEMENT

We would like to express our heartfelt thanks to the authority of Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka, Bangladesh and the Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh for the conduction of our experimental work.

REFERENCE