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Abstract—This study explores the possible dynamical 

motions for a two-wheel vehicle with constant speed. Both of 

sufficient and necessary conditions for the existence of circular 

motion are obtained. Nine types of possible motion for 

two-wheel vehicle are then deduced from the obtained 

necessary condition. Numerical simulations are also given to 

demonstrate the analytical results and the usage of constant 

speed control for two-wheel vehicle’s motion.  

 

Index Terms—Circular motion, vehicle, dynamics.  

I. INTRODUCTION 

Due to the rapid development of electronic technology, the 

research of smart cars has recently attracted lots of attention, 

especially in self-driving cars. Among those studies, Google 

Company has developed a self-driving car for road testing. It 

can also be seen from the literatures that autonomous driving 

technology can reduce the accident, relax the impact of 

traffic congestion and improve the safety of vehicle driving 

[1]. In the study of the dynamical behavior of vehicle 

dynamics,  lots of results have been presented to find possible 

causes of making traffic accidents and enhance the driving 

safety for automated steering vehicle (e.g., [2]-[4]).  

Several control schemes have been proposed for the 

guidance and/or motion control of vehicle or mobile robot 

(e.g., [5]-[10]). Among those studies, Song and Li [8] 

developed an LQR controller from a linear state space model. 

In their demonstrations, tracking errors can be eliminated 

and the mobile robot can follow a specified trajectory. The 

addition of nonlinear control for mobile robot can be solved 

by using discontinuous feedback and variable continuous 

feedback control laws [9]-[10]. 

Most of existing vehicles on the road are known to have 

four wheels, which makes the vehicle hard to turn with small 

radius. In this paper, we will extend the study of two-wheel 

vehicle presented in [8] for finding its possible dynamical 

motion with constant speed. The analytical results will reveal 

that the two-wheel vehicle can exhibit self-spinning motion 

which is hard for the vehicle with four wheels.  

The paper is organized as follows. In Section II, we will 

first recall a result on the decision of periodic solution for the 

given dynamical system from [9]. It is followed by the 

derivation of necessary and sufficient conditions for the 

existence of circular motion for the two-wheel vehicle 

dynamics with constant speed. Numerical simulations will be 
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given in Section IV to demonstrate the analytical results and 

the usage of the obtained necessary conditions. Finally, 

concluding remarks are given in Section V.  

II. PRELIMINARY 

In the following, a condition for the occurrence of the 

orbital motion will be recalled from [11]. The result will then 

be used in Section III for the study of the condition for 

possible circular motion exhibited on a two-wheel dynamics.  

Consider a two-dimensional system as given in Eqs. (1)-(2) 

below:  

 

1 1 1 2( , ),x f x x  (1) 

2 2 1 2( , ),x f x x  (2) 

 

where 2

1 2( ,  )x x  and 1 2,  f f  are assumed to be two 

smooth functions of x1 and x2. Suppose we can find a 

continuous and differentiable function V (x1, x2) such that  

 

1 2 1 1 2 2 1 2

1 2

( , ) ( , ) ( , ) 0.
V V

V x x f x x f x x
x x

 
 

 
 (3) 

 

Denote  the solution trajectory of system Eqs. (1)-(2) 

originating at the initial  1 2(0), (0) .
T

x x By Eq. (3), the time 

derivative of  1 2( ), ( )V x t x t is zero along , so that 

 1 2( ), ( )V x t x t is constant along . Let the set S be defined by  

 

    1 2 1 2 1 2( , ) : ( ), ( ) (0), (0) 0.S x x V x t x t V x x t   

 

(4) 

 

It is clear that  is a subset of S. Thus, we can conclude 

that the system will have a closed trajectory solution when S 

is a closed curve. Details are given in Proposition 1 below. 

Proposition 1: Suppose there exists a continuous and 

differentiable function V such that the condition given in Eq. 

(3) holds. Then the system (1)-(2) will exhibit a closed 

trajectory if V (x1, x2) = c ≥ 0 is a closed curve.  

III. ANALYSIS OF TWO-WHEEL VEHICLE DYNAMICS 

Consider a two-wheeled vehicle model as depicted in Fig. 

1. The corresponding motion equation can be adopted from 

[8] as given in Eqs. (5)-(7) below: 

 

cos ,px V     (5) 

sin ,py V    (6) 

.
2

R LV V

L
 


   (7) 
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Here, x, y, and θ are system states, VP, VL and VR denote the 

speeds of the vehicle, the left wheel and the right wheel, 

respectively. In addition, θ is the angle between vehicle’s 

heading direction and the X-axis, ω represents the yaw rate 

of the vehicle, P denotes the center of mass and  L is the half 

width of the vehicle. By the definition, it is clear that we have  

VP = (VR+VL) / 2.  

 

 
 

Fig. 1 Two-wheeled vehicle model 

 

In the following, we will study the possible dynamical 

motion of the vehicle system (5)-(7) with constant speed. 

That is, the values of VR and VL are both constant.  

It is clear from Eqs. (5)-(6) that we have the following 

relationship: 

 

1tan .
y

x
    (8)   

 

That means, the motion of θ will also depends on Eqs. 

(5)-(6).  In the following analysis, we will focus on the 

dynamics given in (5)-(6) only.  

First, we consider the necessary condition of circular 

motion for the vehicle system (5)-(7). Suppose the two-wheel 

vehicle will exhibit a circular motion. Let (xc, yc) denote the 

center of the assumed circular motion and  be the 

corresponding angular velocity, respectively, as shown in Fig. 

1. It is observed from Fig. 1 that we can have the following 

relationships: 

 

( ) ,RV R L    (9) 

( ) .LV R L    (10) 

 

The two equations above lead to the next relationship: 

( ) ( ).R LV R L V R L    So, we can have ( )RV R L    

and ( )LV R L    for some constant .   

Based on the discussions above, then we have the following 

necessary condition. 

 

Lemma 1. Suppose the vehicle exhibits circular motion. 

Then we have the following conditions:  

(i) If the circular motion becomes linear motion, i.e., 

R   , then VR = VL. 

(ii) If the circular motion becomes a self-spinning motion, 

i.e., 0R  , then VR = VL. 

(iii) If the circular motion has finite radius, 0 R  , then 

the values of VR and VL can be selected as 

( )RV R L    and ( )LV R L    for some 

constant 0.    

 

Note that, the sign and the magnitude of μ in Lemma 1 

determine the direction and the angular speed of the circular 

motion, respectively. In fact, 0   (i.e., R LV V ) 

corresponds to counterclockwise motion, while 0   (i.e., 

R LV V ) associates with clockwise motion. 

 

Next, we consider the sufficient condition of circular 

motion for the vehicle system (5)-(6).  

Choose ( , )V x y as defined in Eq. (11) below: 

 
2 2( , ) ) )( ( ,c cV x y yx x y     (11) 

 

where (from Fig. 1) 

 

cos ,
2

cx x R



 
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 (12) 

sin .
2

cy y R



 

   
 

 (13) 

 

It is clear that the set of (x, y) that satisfies 2( , )V x y R is 

a closed curve.  

Now, we apply the function V to Eqs. (5)-(6). We then 

have 

 

   

 

   

2
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0.   (14) 

 

The next result follows readily from Proposition 1. 

 

Lemma 2. The vehicle system (5)-(7) will exhibit circular 

motion if the values of RV  and LV  are both constant.  

 

Note that, the relation between ω and Ω can also be 

calculated as given below: 

 

( ) ( )
.

2 2

R LV V R L R L

L L


    
     (15) 

IV. SIMULATION RESULTS 

In this section, we will construct numerical results by 

using code Matlab to demonstrate the analytical results 

obtained in Section II. First, we will consider all possible 

typical vehicle motions described in Lemma 1. Two 

examples of specified motion will then be constructed by 

using those typical motions to demonstrate the usage of 

constant speed control for two-wheel vehicle’s motion.  

A. Typical vehicle motion 

First, we present the numerical results for the motion of 

the center of mass P. In the following simulations, we assume 
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that 1.8L  (m) and 5RV  (m/s). The simulation results for 

the motion of the center of mass P with different values of LV  

are shown in Fig. 2. It is observed from Fig. 2 that the 

trajectory is a clockwise circle if R LV V  or a 

counterclockwise circle if R LV V . In addition, the trajectory 

will be a straight line if .R LV V  The numerical results 

shown in Fig. 2 agree with those given in Lemmas 1 and 2. 

Moreover, from Eq. (15), the bigger the value | |R LV V  is, 

the larger the angular speed | |  or | |  is.  

 

 
 

Fig. 2 motion of the center of mass P with VR =5(m/s) and various value of 

VL(m/s). 

 

Next, we consider the motions of two wheels and the 

center of mass P with respect to different setting values of 

wheel speed.   

Consider an inertial coordinate system with the initial 

position of the point P being at the origin (0,0). The initial 

heading of the vehicle is set to be π/2. Here, we consider three 

different values of LV  with 0LV  (m/s), 2LV  (m/s) and 

2LV   (m/s), respectively. Details are given below. 

 

Case 1. 0LV  (m/s) 

In the simulation result of 0LV  (m/s), the motion of the 

point P is stationary point when the right wheel speed is 0. 

However, the motion of the point P is either counterclockwise 

spin or clockwise spin when the right wheel speed is positive 

or negative, respectively. Details are depicted in Fig. 3. 

 

 

 
 

Fig. 3 Simulation results of the left and right wheel trajectories for VL = 0(m/s) 

and various value of VR(m/s) 

 

Case 2. 2LV  (m/s) 

In the simulation result of 2LV  (m/s), the vehicle motion 

is forward linear motion when the right wheel speed is also 

2(m/s). However, when R LV V  or R LV V , the vehicle 

produces a clockwise or counterclockwise rotary motion with 

a radius, respectively. When 0RV  , as shown in Fig. 4 the 

rotational motion radius will be less than L of which 

0RV  (m/s). Moreover, the vehicle will produce clockwise 

spin motion when R LV V  . The timing responses of the 

left-wheel ,LP  right-wheel RP and the center of mass P in 

X-Y coordinate for 0RV  are given in Fig. 5, respectively. 

 

 

 
 

Fig. 4 Simulation results of the left and right wheel trajectories at VL = 2(m/s) 

and various value of VR(m/s) 
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Fig. 5 Vehicle trajectories at VL = 2(m/s). 

X-t plot at (a) VR = -2(m/s); (c) VR = -1(m/s); (e) VR = 0(m/s). 

Y-t plot at (b) VR = -2(m/s); (d) VR = -1(m/s); (f) VR = 0(m/s). 

 

Case 3. 2LV   (m/s) 

Simulation results for 2LV   (m/s) are obtained as 

depicted in Fig. 6 and 7. It can be found that those trajectories 

are opposite to the ones shown in Fig. 4 and 5 for 

2LV  (m/s).  
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Fig. 6 Simulation results of the left and right wheel trajectories at VL = −2(m/s) 

and various value of VR(m/s) 
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Fig. 7 Vehicle trajectories at VL = -2(m/s). 

X-t plot at (a) VR = 0(m/s); (c) VR = 1(m/s); (e) VR = 2(m/s). 

Y-t plot at (b) VR = 0(m/s); (d) VR = 1(m/s); (f) VR = 2(m/s). 

 

Based on the simulation results presented above, we can 

summarize the possible typical motion of two-wheel vehicle 

as listed below: 

(i) When 
R LV V  , the vehicle performs a 

counterclockwise circular motion on the right half 

plane of the coordinate y-axis. Two examples are 

shown in Fig. 8. 

(ii) When 
R LV V , the vehicle performs a clockwise 

circular motion on the right half plane of the coordinate 

y-axis. Two examples are shown in Fig. 9. 

(iii) When 
R LV V , the vehicle performs a 

counterclockwise circular motion on the left half plane 

of the coordinate y-axis. An example is shown in Fig. 

10(a). 

(iv) When 
R LV V  , the vehicle moves clockwise in the 

left half plane of the coordinate y-axis. An example is 

shown in Fig. 10(b). 

(v) When R LV V  , 0RV   and 0LV  , the vehicle spins 

counterclockwise at the origin of the coordinates. An 

example is in Fig. 11(a). 

(vi) When R LV V  , 0RV   and 0LV  , the vehicle spins 

clockwise at the origin of the coordinates. An example 

is shown in Fig. 11(b). 

(vii) When R LV V , 0RV   and 0LV  , the vehicle moves 

linearly in the positive direction of the y-axis on the 

coordinates. An example is shown in Fig. 12(a). 

(viii) When R LV V , 0RV   and 0LV  , the vehicle moves 

linearly in the negative direction of the y-axis on the 

coordinates. An example is shown in Fig. 12(b). 

 

  
 (a)  (b) 

 

Fig. 8 Vehicle time response diagram at VL = -7.5(m/s). 

(a) VR = 5(m/s); (b) VR = -5(m/s) 

 

  
 (a)   (b) 

 

Fig. 9 Vehicle time response diagram at VL = 7.5(m/s). 

(a) VR = 5(m/s); (b) VR = -5(m/s) 

 

    
 (a)  (b) 

 

Fig. 10 Vehicle time response diagram at VL = 0(m/s). 

(a) VR = 5(m/s); (b) VR = -5(m/s) 

 

  
 (a)  (b) 

 

Fig. 11 Vehicle time response diagram  

(a) 5( / ), 5( / )L RV m s V m s   ; (b) 5( / ), 5( / )L RV m s V m s    

 

      
 (a)  (b) 

 

Fig. 12 Vehicle time response diagram  

(a) 5( / ), 5( / )L RV m s V m s  ; (b) 5( / ), 5( / )L RV m s V m s     
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According to the discussions above, we can characterize 

nine types of possible motion for two-wheel vehicle with 

constant speed as defined in Fig. 13 and Table 1. This 

includes the type V for “halt” motion when both values of  VR 

and VL are zero. The relationship of the motion type with 

respect to the values of VR and VL is shown in Fig. 14.  

 

   
I II III 

   
IV V VI 

   
VII VIII IX 

 
Fig. 13 Motion type  

 
Table 1 Motion type description 

 

Type Description 

Type I Turn left forward 

Type II Straight forward 

Type III Turn right forward 

Type IV counterclockwise self-spin 

Type V halt 

Type VI clockwise self-spin 

Type VII Turn left backward 

Type VIII Straight backward 

Type IX Turn right backward 

 

VR

VL

VR=VLVR= VL

I

II

III

IV

V

VI

VII

VIII

IX

 
 

Fig. 14 motion type with respect to  and R LV V  

 

B. Specified motion 

In this section, two examples of specified motion will be 

constructed by using those typical motions presented above to 

demonstrate the usage of constant speed control for 

two-wheel vehicle’s motion. 

The first example is a path consisting of two semicircles 

and straight lines as depicted in Fig. 15. Such a motion is not 

difficult to achieve. The corresponding simulation procedure 

is discussed below. 

 Path

 
 

Fig. 15 Specify path 2 

 

Assume the initial position of the vehicle is at the origin 

(0,0) and the initial heading of the vehicle is 0. The 

simulation procedure can then be constructed as follows: 

(i) =1, 1L RV V  : Type II, forwards to (5, 0). 

(ii) =2, 1L RV V  : Type III, turns right π radians with radius 

R = 5.4. 

(iii) =1, 1L RV V  : Type II, forwards to (-5, -10.8). 

(iv) =2, 1L RV V  : Type III, turns right π radians with radius 

R = 5.4. 

(v) =1, 1L RV V  : Type II, forwards to (-5, 0). 

(vi) =0, 0L RV V  : Type V, halts at (-5, 0). 

 

The simulation results are shown in, which can be divided 

into five segments and represented by different colors. The 

trajectory of the center of mass P is denoted as solid line 

while the right wheel trajectory is a dash-dot line and the left 

wheel trajectory is a dashed line, respectively. It is found 

from Fig. 16 that the trajectory of the center of mass P agrees 

with the specified path given in Fig. 15. 

 

 
 (a)  (b) 

 

Fig. 16 Trajectory simulation result. 

(a) Trajectory simulation (b) Time response of trajectory 

 

The second example of motion is depicted in Fig. 17, 

which is an 8-alike shaped path with sharp turning angle on 

the four corners. In general, it is hard for a three-wheel or 

four-wheel vehicle to exhibit such a motion. However, due to 

the fact of owning self-spinning type of motion self-spin as 

discussed above, it is not difficult for two-wheel vehicle to 

fulfill the task. Details are given below.  
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Path

Two Wheel Trajectory

 
 

Fig. 17  Example path 1 

 

Assume the initial position of the vehicle is at the origin 

(0,0) and initial heading of the vehicle is π / 4. We can now 

construct the motion by using nine types of motion defined in 

Fig. 13 to fulfill the requirements. The simulation procedure 

is as follows: 

(i) =1, 1L RV V  : Type II, forwards to (5, 5). 

(ii) =1, 1L RV V   : Type VI, clockwise self-spins 3π/4 

radians. 

(iii) =1, 1L RV V  : Type II, forwards to (5, -5). 

(iv) =1, 1L RV V   : Type VI, clockwise self-spins 3π/4 

radians. 

(v) =1, 1L RV V  : Type II, forwards to (-5, 5). 

(vi) 1, 1L RV V   : Type IV, counterclockwise self-spins 

3π/4 radians. 

(vii) =1, 1L RV V  : Type II, forwards to (-5, -5). 

(viii) = 1, 1L RV V  : Type IV, counterclockwise self-spins 

3π/4 radians. 

(ix) =1, 1L RV V  : Type II, forwards to the origin (0, 0). 

(x) =0, 0L RV V  : Type V, halts at the origin (0, 0). 

 

The simulation results are shown in Fig. 18, which can be 

divided into nine segments except step (x) and represented by 

different colors. The notations for the trajectories defined in 

Fig. 16 will be also applied to those in Fig. 18. It is observed 

from Fig. 18 that the trajectory of the center of mass P is 

consistent with the specified path defined in Fig. 17. 
 

 
 (a)  (b) 

 

Fig. 18 Trajectory simulation result 

(a) Trajectory simulation (b) Time response of trajectory 

 

V. CONCLUSIONS 

In this paper, we have studied the possible dynamical 

motions for a two-wheel vehicle with constant speed. The 

necessary and sufficient conditions are also obtained for the 

existence of circular motion. In addition, numerical 

simulation results have demonstrated the obtained analytical 

results and the usage of constant speed control for two-wheel 

vehicle’s motion planning. Those studies can be directly employed 

to the practical applications. 
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