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Gorenstein FP,, injective modules
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Abstract— In this paper, we introduce and study Gorenstein
FPn injective modules and investigate the homological
properties of them.
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I. INTRODUCTION

The flat modules and FP-injective modules play an
important role in characterizing coherent rings. Naturally,
many literature articles generalized these notations in relative
homological algebra. In [5], Costa introduced absolutely
clean and level modules. In [6], Chen and Ding introduced
n-flat and n-FP injective modules. In 2015, Wei and
coauthors call them FP,-injective and FP,-flat , respectively.
In 2017, Bravo and others investigate n-coherent and give
some equivalent characterizations of (n-1)-coherent ring [7].
On the other hand, Enochs and Jenda introduced Gorenstein
projective, injective, Gorenstein flat modules, and developed
Gorenstein homological algebra in [2, 3.4]. Later, many
scholars further studied these modules and introduced various
generalizations of these modules. In [11], Mao and Ding gave
a definition of Gorenstein FP-injective modules. However,
under their definition these Gorenstein FP-injective modules
are stronger than the Gorenstein injective modules. In 2014,
Bravo et al. introduced in [1] the notion of Gorenstein
AC-projective (resp., Gorenstein AC-injective) modules and
established the “Gorenstein AC-homological algebra™ over an
arbitrary ring.

Inspired by aforementioned work, we introduce the
concept of Gorenstein FP,-injective modules as a
generalization of above Gorenstein homological modules.
Then we character when a left module is Gorenstein
FP.-injective over (n-1)-coherent rings. In the following, we
recall some notions that will be used throughout the paper.
Definition 1.1[3] A left R-module M is called Gorenstein
FP-injective, if there exists an exact sequence
E:"'—>E1—>E0—>EO—>E1—>"'
of injective left R-module with M =Im (E, — E°) such that the
functor Homg(Q, -) leaves the sequence exact whenever Q is
FP-injective.

Definition 1.2[5] A ring R is called n-coherent ring, if every
finite n-presented module coincident with finite
(n+21)-presented module.

Definition 1.3[5] A R-modules M is called finite n-presented,
if there exists an exact sequence of left R-modules

Py— Py1— --P1— Pp— M — 0,

where P; is finitely generated projective for 0 < i < n. Such
exact sequence is called a finite n-presentation of M.
Definition 1.4[7] A right R-modules N is called FP,-flat if
Tor®, (N,F) = 0 for any finite n-presented module F.
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A left R-modules M is called FP,-injective if Ext'r(F, M) =0
for any finite n-presented module F.

II. GORENSTEIN FPy INJECTIVE MODULES

Definition 2.1 A left R-module M is called Gorenstein FP,
injective, if there exists an exact sequence
E:"'—>E1—>Eo—>EO—>E1—>"'
of injective left R-module with M =Im (E, — E°) such that the
functor Homg(Q, -) leaves the sequence exact whenever Q is
FP,-injective.

Remark 2.2 (1) It is clear that each injective module is
Gorenstein FP,, injective.
(2) If M is a Gorenstein FP, injective module, by symmetic all
the kernels, the images, and the cokernels of E are Gorenstein
FP, injective module.
(3) Gorenstein AC injective © Gorenstein FP, injective ©
Ding injective © Gorenstein injective.
(4) If n =0, then Gorenstein injective modules are Gorenstein
FP,injective.
(5) If R is n-coherent, then Gorenstein FP, injective modules
are Gorenstein injective; If R is coherent, then Ding injective
modules are Gorenstein FP, injective.
(6) The class of Gorenstein FP, injectives is closed under
direct summands.
Theorem 2.3 The following assertions are equivalent for a
left R-module M.
(1) M is Gorenstein FP, injective.
(2) M has an exact left injective resolution which is Homg(Q,
—)-exact all FP,-injective left R-modules Q, Ext'r(Q, M) = 0
for all i =1.
(3) There exist a short exact sequence of left R-modules 0 —
K— E— M — 0, where E is injective and K is Gorenstein FP,
injective.
Proof. (1) & (2), (1) = (3) is clear by the definition of
Gorenstein FP, injective module.
(3) = (2) Since K is Gorenstein FP, injective, there exist an
exact sequence

> E > Ey—>K—0,
which is Homg(Q, —) —exact, where Q is FP.-injective and E;
are injective for all i 0.

Note that the exact sequence of left R-modules 0 - K — E —
M — 0 is Homg(Q, —)-exact, so we obtain an left injective
resolution of M

> E—>E—>E—>M-—0.
On the other hand, for all FP.-injective Q, we have an exact
sequences of left R-modules '

-+ — Ext'r(Q,E) — Ext'r(Q,M) — Ext"'z(Q,K)— --

By dimension shifting, Ext"'r(Q, K) = Ext'r(Q, E) = 0 for all i
> 1, therefore Ext's(Q,M) = 0. So M is Goren
stein FP,-injective by (1) <(2).
Proposition 2.4 Let 0 - A— B— C — 0 be an short exact
sequence of left R-modules.
(1) If A and C are Gorenstein FP, injective, then so is B .
(2) If A and B are Gorenstein FP,, injective, then so is C.
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(3) If B and C are Gorenstein FP, injective, then A is
Gorenstein FP,, injective if and only if Ext'z(Q, A) = 0 for all
FP,-injective left R-modules Q.

Proof. This is similar to the proof of [4, Theorems 2.8, 2.11].
Lemma 2.5 Let M be a left R-module. Consider two exact
sequences of left R-modules,

0->M->Gy— - —>G.1—G,—0,

and

0->M—->Hy— - -—>H.1—>H—O0,

where Gy, - - -, G,_; and Hy, - - -, H,_; are Gorenstein FP,

injective , then G, is Gorenstein FP, injective if and only if H,
is Gorenstein FP, injective .
Proof. It is obtained by Proposition 2.4 and [10, Lemma 2.1].
Proposition 2.6 Let n >1. Then the following are ture for any
(n-1)-coherent ring R.
(1) Ext'r(F, M) = 0 for all finitely n-presented left R-modules
F.
(2)If0 > T— M — L — 0 is a short exact sequence of left
R-modules with T and M FP,-injective, then L is
FP,-injective.
Proof. Let F be a finitely n-presented left R-module. There
exists an exact sequence 0 —» T — P — F — 0, with P finitely
generated projective and T finitely (n-1)-presented. Consider
exact sequences

-+ — Ext'g(T, N) — Ext’s(F, N) — Ext’g(P, N) — -+
since R is (n-1)-coherent, Ext's(T, N) = 0. Ext’(F, N) = 0. By
dimension shifting Ext'z(F,N) =0.
(2) Let0 - T — M — L — 0 be a short exact sequence. If N
and M areFP,-injective, consider the exact sequence

-+ — Ext'g(F, M) — Ext'g(F, L) — Ext’z(F, N)— ---.
By (1) we can get Ext?x(F, N) = 0, therefore Ext'g(F, L) = 0.
so L is FP,-injective.
Definition 2.7 Let M be a left R-modules and n >1. Put

FPy-idM) =inf {m|0 > M —>Ey— -+ > Ep1 — Epn—

0 is an FP, injective of M} .
If no such m exists, set FP-id(M) = oo.
Then we call FP,-id(M) the FP,-injective dimension of M.
Definition 2.8 Let n >1 and N a left R-modules. Put
FP,-fd(N) =inf {m|0 > Fp,— Fpi— - -
is an FP, flat of N}

If no such m exists, set FP,-fd(N) = oo.
Then we call FP,-id(N) the FP,-flat dimension of N.
Proposition 2.9. Let R be an (n-1)-coherent ring and n >1.
Then the following conditions are equivalent for any left
R-module M.

(1) FP-id(M) < m.

(2) Ext"z(Q, M) = 0 for all FP,-injective R-modules Q .

(3) Ext™* 2 (Q, M) = 0 for all k = 1, and all finite n-presented
R-modules F.

(4) For every exact sequence 0 > M — Ey — - -
K— 0 where Ey, -+, E,,_; are FP,-injective, then also K is
FP,-injective .

Proof. It is easy to prove by dimension shifting and
Proposition 2.6.

Proposition 2.10. Let R be an (n-1)-coherent ring and n >1.
Then following conditions are equivalent for N is a left
R-modules.

(1) FP-fd(N) <m;

(2) TorR+1 (N, F) = 0 for all finite n-presented R-modules F.
(3) Tor®. (N, F) = 0 for all k = 1, and all finite n-presented
R-modules F.

- —F—>N—>0

- Epa—

(4) For every exact sequence 0 > K — Fy 31— -+ > Fg— N
— 0 where Fy, -+, F,_1 are FP,-flat , then also K is FP,-flat.
Proof. It is similar to the proof of Proposition 2.9.
Proposition 2.11 Let R be an (n-1)-coherent ring and n >1.
Then following conditions are equivalent for C is a left
R-modules.
(1) FP,-fd(C) = FP,-id(C");
(2) FP,-idg(C) = FP,-fd(C").
Proof. This follows from the definition and [7, Proposition
3.5].
Theorem 2.12 Let R be an (n-1)-coherent ring and n >1. Then
following conditions are equivalent for a left R-modules M .
(1) M is Gorenstein FP, injective. _
(2) M has an exact left FP,, resolution and Ext'r(Q, M) = 0 for
all left R-modules Q with FP,-id(Q) < oo and all i 21.
(3) M has an exact left FP,, resolution and Ext'r(Q, M) = 0 for
all FP-injective left R-modules Q and all i 1.
Moreover, if FP,-id(R) < <, then the above conditions

are equivalent to
(4) Ext'z(Q, M) = 0 for all FP,-injective left R-modules Q,
and all i =1.
Proof. (1) = (2) is clear. (2) = (3) hold by dimension shifting.
(2) = (4) Obvious.

(3) = (1) Let f : E; —M be an FP.-injective cover of M.

Consider the short exact sequence
0 —-Ey —E —Cy —0,
where E is injective and Cyis FP,-injective. Denote i : Eq —E.
Consider the exact sequence
0 — HomR(Co,M)
EthR(Co,M) =0.
For every f: E; —M , there exists g: E,—M such that gi = f.
Since f is cover, there exists a homomorphism h : E— E, such
that fh = g. Therefore fhi = f, and hi is an isomorphism. It
follows that Eg is injective. Thus, for any FP,-injective Q,
there is the exact sequence
Homg(Q,Eq) —Homg(Q,Imf) —Ext'r(Q,Kerf)— 0.
In addition, the exactness of 0 — Kerf — Ey—Imf — 0 yields
the exact sequence
Homg(Q,E) — Homg(Q, Imf) — 0, Hence Ext'r(Q, Kerf) =
0.
Hence Exth(Q,Kerf):O. So Kerf has FP-injective cover E;
—Kerf with E; is injective. Continuing this process, we can
get a Homg(Q, — ) exact complex

- —>E—»E—M —0 _
with E;is injective. Note that Ext's (R,M) = 0 for all i =1 and
Ext’% (R,M) = M since M has an exact left FP, resolution. So
the complex
- —>E—»E—M —0 '

is exact. On the other hand Ext'k(Q,M) = 0 for all
FP.-injective Qand all i 2 1. So M is Gorenstein FP, injective.
(4) = (1) By the proof of (3) = (1), we obtain an exact
complex
=+ -—>E1—>E0—>EO—>E1—>' .-
such that M = Im (E, — E%, and for all FP,-injective
Q,Hom (Q, ¢) is exact. Next we will show that Hom (Q, ¢ ) is
exact for any left R-module Q with FP.-id(Q) < o .We
proceed by induction on m. The case m =0 is clear. Let m 1.
There is an exact sequence
with H injective, which induces an exact sequence
0 - Hom (L, &) = Hom (H, &) = Hom(Q, &) —0

—Homg(E,M)—Homg(Ey,M)—
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of complexes. Note that FP-id(L) = m— 1, so Hom(L, ¢) is
exact. Thus Hom (Q, &) is exact. In particular, since
FP.-id(rR) < oo, HOM(rR, &) is an exact. Therefore ¢ is an
exact sequence. So M is Gorenstein FP, injective.

I1l. CONCLUSION

We give some equivalent characterizations of Gorenstein
FP, injective modules in (n-1)-coherent ring.
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