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 

Abstract— This paper proposes an incorporated algorithm 

for solving the power economic dispatch problem (PEDP) of 

generating units with fuel changes. The particle swarm 

optimization (PSO) enhances the proposed method efficaciously 

find and accurately search. The multiple updating (MU) can 

help the incorporated algorithm prevent deforming the 

augmented Lagrange function and caused difficultly in 

searching an optimal solution. The incorporated approach 

(PSO-MU) combines the PSO and a MU that has benefits of 

adopting a widespread area of punishment parameters and a 

small-size population. The proposed PSO-MU has been 

demonstrated on a practical ten power generators system; each 

generating unit is composed of two or three fuel sources. The 

entire generating cost of PEDP got by the proposed algorithm 

has been competed with previous researches for validating its 

efficacy. Simulation results of three examples clearly show that 

the incorporated algorithm is an effective alternative for 

solving PEDP of generating units with fuel changes in the 

realistic operation of power system. 

 

Index Terms—Fuel changes, power economic dispatch, 

particle swarm optimization, multiple updating. 

 

I. INTRODUCTION 

The power economic dispatch problem (PEDP) 

traditionally decides the best electricity generation for all 

power generators, which will reduce the entire cost while the 

system both of demand and constraints have been contented 

[1]~ [3]. The PEDP is always an integration problem due to 

its huge size, a nonlinear objective function, and a big 

amount of system constraints [4]. 

In practical operations of power system, some fired 

generators, which are provided with diverse fuels like natural 

gas, oil and coal. Functions of fuel price are always 

segmented as piecewise quadratic cost functions with 

multi-fuel sources. The power generating units having fuel 

changes is to reduce entire fired cost between available fired 

sources for each generator meeting loading and generation 

ranges. The PEDP is a nonconvex and complex optimal issue 

because it involves segmented values at each limit 

constituting numerous local optima. Consequently, 

traditional algorithms are usually hard to handle the PEDP of 

units with fuel changes. A conventional method [5] 

linearized segments of cost function to resolve the PEDP of 

generators having multiple fuel options. A numerical method 

(HM) [6] retained the supposition of piecewise quadratic 

price curves and solve the PEDP of units with fuel changes. 

Nevertheless, the computation of HM was still exponentially 

growing time complexities for bigger systems with 

nonconvex constraints. The Hopfield neural network (HNN)  
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[7] was also ingenious to punishment factors correlative with 

system constraints. An evolutionary programming (EP) [8] 

for solving the PEDP with quadratic cost function arising due 

to different fuel options The enhanced Lagrangian neural 

network (ELANN) [9] had speedy computational efficacy 

because a momentum technique was used in learning 

procedure of ELANN. Nonetheless, approaches of HNN and 

ELANN needed a big iterative loop for convergence of the 

best answer, and they usually expressed oscillation in the 

transient procedure. The Adaptive Hopfield neural network 

(AHNN) [10], [11] always adjusts the gradient and biases of 

neurons within the convergent procedure to promote the 

computational property. 

Some deductive approaches have been utilized to resolve 

the PEDP of units having fuel changes, too. The genetic 

algorithm (GA) [12], [13], evolutionary programming (EP) 

[14], [15], differential evolution (DE) [16], particle swarm 

optimization (PSO) [17], a combination of the EP, tabu 

search and quadratic programming (ETQ) [18], the hybrid 

real coded genetic algorithm (HRCGA) [19], and the hybrid 

integer coded differential evolution-dynamic programming 

(HICDEDP) [20]. Nevertheless, methods mentioned above 

are usually tardy because of combining single techniques. 

Various algorithms also have been presented to solve 

PEDP of units with multi-fuel options recently. Such as a 

synergic predator-prey optimization (SPPO) [21], an 

integrated of modified shuffled frog leaping algorithm 

(MSFLA), a global-best harmony search algorithm (GHS), 

and the SFLA-GHS [22], augmented Lagrange Hopfield 

network (ALHN) [23], ALHN initialized using quadratic 

programming (QP-ALHN) [24], improved particle swarm 

optimization (IPSO) [25], the enhanced augmented Lagrange 

Hopfield network (EALHN) [26], the composite cost 

function (CCF) [27], the chaotic improved honey bee mating 

optimization (CIHBMO) [28], and Pseudo-Gradient Based 

PSO [29]. 

The PSO exploited from Kennedy et al. [30], its 

developing was based on observations of animals’ societal 

actions, such as bird flocking, fish schooling, and swarm 

concept. PSO has been diffusely used in power optimal 

problems. Even if this method can bring about high-quality 

answers with less calculation iterations and steady 

convergency contrast to other algorithms [31], it appears to 

be ingenious to tuning of certain weightings or factors. The 

PSO has shown its simplicity and facile realization in many 

previous reports [32]-[36]. 

II.  SYSTEM FORMULATION 

The objective function of PEDP is mainly to decide the 

best loading for all online dispatching generators, which 
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reduces the entire fired price while approving of system 

constraints. It can be described below. 

A. Fuel Cost  

Generally, fuel cost function of every power generating 

unit is denoted by a sole quadratic cost function. Herein, 

because of generating unuts having multiple fuel changes, 

this cost function is piecewise and quadratic. Accordingly, 

the PEDP of generators having multiple fuel changes with 

piecewise quadratic price functions are expressed as [6] 
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Where Fi(Pi) stands fuel cost of generating unit i. Pi 

expresses power output of generating unit i. The ai,k, bi,k and 

ci,,k respectively indicate cost coefficients of unit i for using 

fuel kind k, and n is entire amount of generating units. 

B. System Balance Constraint 

The entire generation must be match to the summation of 

system demand and transmission loss [21] 
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Where Pd is the entire system demand and PL is the 

transmission loss. 

C. Capacity Limit Constraints 

The power productivity of every generating unit i should 

be between its minimum iP  and maximum iP , and it can 

be expressed as [6]: 

 

iji PPP                            (4) 

III. THE INCORPORATED ALGORITHM 

A. PSO 

The PSO [30], [31] is an iterative algorithm based on the 

searching action of swarm particles in a multidimensional 

search area. In PSO, the velocity and the position of each 

particle are updated. In the light of the fitness of the updated 

individuals, the personal best position of each particle and 

the global best position in all the particles are updated. 

Regarding the update of the velocities in the PSO, a particle 

is affect by its personal best position and the global best 

position. Thus, the PSO finds the global optimum by 

regulating the trajectory of each particle toward its personal 

best position and the global best position. In PSO with m 

individuals, each individual is treated as a volume-less 

particle in the n-dimensional space, with the position vector 

and velocity vector of particle i at the t
th

 generation expressed 

as xi(t) = [xi,1(t), xi,2(t), …, xi,n(t)] and vi(t) = [vi,1(t), vi,2(t), …, 

vi,n(t)]. The particle shifts in accordance with the following 

equations [31]: 
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Where i = 1, 2, …, m; j = 1, 2 , …, n, where c1 and c2 are 

called acceleration coefficients, and w is the inertia weight. 

Vector pbeseti,j(t) = [pbesti,1(t), pbesti,2(t), …, pbesti,n(t)] is the 

best former position of particle i called personal best (pbest) 

position, and vector gbest(t) = [gbesti,1(t), gbesti,2(t), …, 

gbesti,n(t)] is the position of the best particle between all the 

particles in the population and called global best (gbest) 

position. 

B. MU 

Michalewicz et al. [37] surveyed and compared several 

constraint-handling techniques used in evolutionary 

algorithms. Among these techniques, the penalty function 

method is one of the most popularly used to handle 

constraints. In this method, the objective function includes a 

penalty function that is composed of the squared or absolute 

constraint violation terms. Powell [38] noted that classical 

optimization methods include a penalty function have certain 

weaknesses that become most serious when penalty 

parameters are large. More importantly, a large penalty 

parameter tends to be ill conditioned the penalty function so 

that obtaining a good solution is difficult. However, if the 

penalty parameter is too small, the constraint violation does 

not contribute a high cost to the penalty function. 

Accordingly, choosing appropriate penalty parameters is not 

trivial. Herein, the MU [38], [39] is introduced to handle this 

constrained optimization problem. Such a technique can 

overcome the ill conditioned property of the objective 

function. Considering the nonlinear problem with general 

constraints as follows: 
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Where hk(x) and gk(x) stand for equality and inequality 

constraints respectively. 

The augmented Lagrange function (ALF) [39], [40], [41] 

for constrained optimization problems is defined as: 
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Where k and k are the positive penalty parameters, and the 

corresponding Lagrange multipliers ),,( 1 em   and 

),,( 1 im  > 0 are associated with equality and 

inequality constraints, respectively. 
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The contour of the ALF does not change shape between 

generations while constraints are linear. Therefore, the 

contour of the ALF is simply shifted or biased in relation to 

the original objective function, f(x). Consequently, small 

penalty parameters can be used in the MU. However, the 

shape of contour of La is changed by penalty parameters 

while the constraints are nonlinear, demonstrating that large 

penalty parameters still create computational difficulties. 

Adaptive penalty parameters of the MU are employed to 

alleviate the above difficulties. More details of the MU have 

shown in [42]. 

 

 

C. The proposed PSO-MU 

Figure 1 displays the flow chart of the incroporated 

algorithm, which has two iterative loops. The ALF is used to 

obtain a minimum value in the inner loop with the given 

penalty parameters and multipliers, which are then updated 

in the outer loop toward producing an upper limit of La. 

When both inner and outer iterations become sufficiently 

large, the ALF converges to a saddle-point of the dual 

problem [38]. Advantages of the proposed PSO-MU are that 

the PSO efficiently searches the optimal solution in the 

economic dispatch process and the MU effectively tackles 

system constraints. 

IV. SYSTEM SIMULATIONS 

In this section, three cases are used to illustrate the 

effectiveness of the proposed algorithm with respect to the 

quality of the solution obtained for solving the PEDP 

considering of generators having multiple fuel changes. The 

proposed method has been tested on a realistic 10-unit power 

system, and each generating unit is composed of two or three 

fuel sources. The cost function using (2) considers multiple 

fuels. The cost coefficients along with the smallest and 

biggest generating capacity limits for every fuel option are 

the same as [6]. The MU was used in the incorporated 

algorithm (PSO-MU) to manage system constraints of the 

inequality and equality. The computational program was 

executed on a desktop computer (Intel(R) Core(TM) i7-3770 

CPU @ 3.4 GHz with 8G Ram) coded in FORTRAN-90 

program and run 100 independent trials for each test case. 

Setting parameters employed in these cases demonstrate as 

the following; the population dimension is fixed as 20. The 

iteration numbers of outer loop and inner loop are set to 

(outer, inner) as (10, 1000) for the proposed PSO-MU. The 

implementation of the proposed algorithm for the test system 

can be described as follows: 
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The objective function: 
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Table 1: Comparisons of the proposed PSO-MU with previous methods for case 1 

 

Methods 

 

Items 

PGPSO 

[29] 

QP-ALHN 

[24] 

ALHN 

[23] 

EALHN 

[26] 

MSFLA 

[22] 

GHS 

[22] 

SFLA- 

GHS[22] 
PSO-MU 

FT Gen FT Gen FT Gen FT Gen FT Gen FT Gen FT Gen FT Gen 

1 2  216.2074  2 216.543  2  216.543  2  216.5441  2 216.5442  2 216.5436  2 216.5442  2  216.5440  

2 1  210.8414  1 210.906  1  210.906  1  210.9057  1 210.9058  1 210.9035  1 210.9058  1  210.9052  

3 1  278.5687  1 278.544  1  278.544  1  278.5441  1 278.5441  1 278.5415  1 278.5441  1  278.5442  

4 3  238.9349  3 239.097  3  239.097  3  239.0967  3 239.0967  3 239.0998  3 239.0967  3  239.0967  

5 1  275.7003  1 275.520  1  275.520  1  275.5195  1 275.5195  1 275.5219  1 275.5194  1  275.5197  

6 3  239.0876  3 239.097  3  239.097  3  239.0967  3 239.0967  3 239.0948  3 239.0967  3  239.0966  

7 1  286.0002  1 285.717  1  285.717  1  285.7170  1 285.7170  1 285.7165  1 285.7170  1  285.7173  

8 3  239.1758  3 239.097  3  239.097  3  239.0967  3 239.0967  3 239.1000  3 239.0967  3  239.0967  

9 1  343.3878  1 343.493  1  343.493  1  343.4932  1 343.4934  1 343.4896  1 343.4934  1  343.4934  

10 1  272.0959  1 271.987  1  271.987  1  271.9863  1 271.9861  1 271.9889  1 271.9861  1  271.9863  

TP (MW/h) 2600.0000  2600.001  2600.001  2600.0000  2600.0002  2600.0001  2600.0001  2600.0000  

TC ($/h) 574.3814 574.381  574.381  574.381  574.3808  574.3808  574.3808  574.380823  

SCV 0.0000 0.0001 0.001 0.0000 0.0002 0.0001 0.0001 0.0000 

 

 

Table 2: Comparisons of the proposed PSO-MU with previous methods for case 2 

 
Methods 

 

Items 

MSFLA 

[22] 

EALHN           

[26] 

HICDEDP 

[20] 

CCF 

[27] 

GHS 

[22] 

SFLA-GHS 

[22] 

SPPO 

[21] 
PSO-MU 

FT Gen FT Gen FT Gen FT Gen FT Gen FT Gen FT Gen FT Gen 

1 2 226.5694 2 218.2502 2 218.2499 2 218.2499 2 218.2499 2 218.2499 2 218.3507 2 218.2499 

2 1 215.3542 1 211.6627 1 211.6626 1 211.6626 1 211.6624 1 211.6626 1 211.5895 1 211.6626 

3 1 291.3490 1 280.7230 1 280.7228 1 280.7228 1 280.7229 1 280.7228 1 280.7704 1 280.7228 

4 3 242.2402 3 239.6316 3 239.6315 3 239.6315 3 239.6313 3 239.6315 3 239.6790 3 239.6315 

5 1 293.0212 1 278.4975 1 278.4973 1 278.4973 1 278.4971 1 278.4973 1 278.4467 1 278.4973 

6 3 242.2402 3 239.6316 3 239.6315 3 239.6315 3 239.6318 3 239.6315 3 239.5304 3 239.6315 

7 1 302.5705 1 288.5847 1 288.5845 1 288.5845 1 288.5846 1 288.5845 1 288.5161 1 288.5845 

8 3 242.2402 3 239.6316 3 239.6315 3 239.6315 3 239.6318 3 239.6315 3 239.6159 3 239.6316 

9 3 355.4991 3 428.5203 3 428.5216 3 428.5216 3 428.5215 3 428.5216 3 428.6269 3 428.5216 

10 1 288.9161 1 274.8671 1 274.8667 1 274.9967 1 274.8666 1 274.8667 1 274.8742 1 274.8667 

TP (MW/h) 2700.0001 2700.0003 2699.9999 2700.1299 2699.9999 2699.9999 2699.9998 2700.0000 

TC ($/h) 626.2543 623.8093 623.8092 623.8092 623.8092 623.8092 623.80900 623.80915 

SCV 0.0001 0.0003 -0.0001 0.1299 -0.0001 -0.0001 -0.0002 0.0000 

 

 

The optimization of PEDP of generating units with 

multi-fuel types is formed by the objective function (1), the 

power balance constraint of (3) and the capacity limit 

constraints of (4). Thus, the optimal cost problem composes 

of one objective function with ten variable parameters and 

one equality equation for the power balance constraint. This 

minimum cost problem consists of one objective function 

with ten variable parameters, (P1~ P10), one equality 

constraint, (h1), and twenty inequality constraints, (g1~ g20), 

for the PEDP of units with multi-fuel types. The sum of 

system constraint violations (SCV) is defined in (13) to 

inspect effect of the constraint feasibility at the final solution. 
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A. Case 1 

To address the realistic operation of power units with 

multi-fuel changes, the optimal economic dispatch is 

obtained only if each generator uses the most economic 

source to burn. The first case is a practical system from [6] 

comprising 10 generating units supplying to a load demand 

(Pd) of 2600MW/h neglecting power loss. For comparison, 

Table 1 lists eight optimal results of this practical test system 

for this case. Results obtained from an integrated of modified 

shuffled frog leaping algorithm (MSFLA), a global-best 

harmony search algorithm (GHS), and the SFLA-GHS [22], 

augmented Lagrange Hopfield network (ALHN) [23], 

ALHN initialized using quadratic programming (QP-ALHN) 

[24], the enhanced augmented Lagrange Hopfield network 

(EALHN) [26], Pseudo-Gradient Based PSO [29], and the 

proposed PSO-MU, are shown in this Table clearly. The Gen, 

TP, TC, and FT stand the units generation, total power, total 

cost, and the fuel types respectively. 

The proposed PSO-MU exhibits not only better solution 

quality but also acquire an exact TP for load demand than the 

previous papers. Although results obtained from MSFLA 

[22], GHS [22], and SFLA-GHS [22] have the less cost than 

the proposed PSO-MU. However, such solutions are 

infeasible ones, because of insufficient or excess demand. 

The SCV indicates that these outputs are infeasible solutions. 

As seen from the optimal solution of the proposed PSO-MU 

with an exact total power (TP) listed in Table 1, the TP is 

2600.0000 MW/h. In this Table, all methods have the same 

fuel type (FT) used for the dispatching generators of this 

case. 

B. Case 2 

The second case is also used to demonstrate that the 

proposed PSO-MU is an effective alternative for solving 

PEDP of generating units with fuel changes in the realistic 

operation of power system. The test system of this case 2 is 
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employed the same practical ten-unit system [6] as case 1 in a 

load demand (Pd) of 2700MW/h neglecting power loss.  

Seven optimal solutions of previous researches of the 

hybrid integer coded differential evolution-dynamic 

programming (HICDEDP) [20], a synergic predator-prey 

optimization (SPPO) [21], MSFLA [22], GHS [22], 

SFLA-GHS [22], EALHN [26], and a composite cost 

function (CCF) [27], have been presented in the Table 2 to 

compare the production cost for case 2. 

By investigating results shown in Table 2, it is observed 

that the best total cost (TC) utilizing PSO-MU is 623.80915 

$/h, which is less much than the best result previously 

reported in MSFLA [22] and is close to before studies of the 

HICDEDP [20], SPPO [21], GHS [22], SFLA-GHS [22], 

EALHN [26], and CCF [27]. Despite the fact that the SPPO 

[21] has the less cost than the proposed PSO-MU, the SCV of 

the SPPO [22] is -0.0002 and the result of the SPPO [22] is 

still an infeasible solution. Therefore, the result got from the 

proposed PSO-MU is an optimal and feasible solution.  

Moreover, Table 3 shows comparisons of the TP, TC and 

average CPU time (CPU_AV) obtained from former studies 

and the proposed PSO-MU for this case. According to the 

CPU_AV of different methods listed in the Table 3, the 

proposed PSO-MU is faster than most of the compared 

algorithms, but slightly slower than EALHN [26]. 

Consequently, the PSO-MU is both providing the precise 

entire power and spending the less CPU_AV than most 

methods for the PEDP of units with multi-fuel sources. 

 

Table 3: Comparisons of the TC and CPU_AV obtained 

from different approaches and the proposed PSO-MU 

for case 2. 

 
Method TP (MW/h)  TC ($/h)  CPU_AV (Sec)  

HM [6] 2702.7 625.18 - 

HNN [7] 2699.7 626.12 ~ 60 

ELANN [9] 2700 623.88 21.36 

AHNN [10] 2700 626.24 ~ 4 

ARCGA [12] 2700 623.828 0.85 

IEP [15] 2700 623.851 - 

DE [16] 2700 623.809 0.083 

MPSO [17] 2700 623.809 - 

HRCGA [19] 2700 623.809 6.47 

HICDEP [20] 2700 623.809 0.513 

QP-ALHN [24] 2699.999 623.809 0.047 

IPSO [25] 2700.0001 623.8089 0.922 

EALHN [26] 2700.0003 623.8090 0.013 

CIHMBO [28] 2700.0002 623.5960 2 

PGPSO [29] 2700.0000 623.8095 0.233 

CGA-MU [42] 2700.0000 623.8095 19.42 

IGA-MU [42] 2700.0000 623.8093 5.27 

PSO-MU 2700.0000 623.80915 0.015 

C. Case 3 

The identical ten units system [6] considering both power 

demand of 2700MW/h and transmission losses is applied in 

the last case. The data of power transmission losses are 

derived from the SPPO [21]. Table 4 provides compared 

results of the SPPO [21] and the proposed PSO-MU in terms 

of power generating cost. The proposed PSO-MU also yields 

better solution quality than the SPPO [21], Table 4 reveals 

that the proposed method not only has the lower total cost 

(TC) than the SPPO [21] method tested, but also generates 

the exact total power (TP) for the system constraints of (11), 

showing that the proposed approach is more effective than 

the SPPO [21] for the PEDP considering power transmission 

losses. Consequently, the comparisons in Tables 1 to 4, have 

clearly revealed that the proposed PSO-MU is more effective 

than previous methods in applying the practical PEDP with 

power units having fuel changes. 

 

Table 4: Comparisons of the proposed PSO-MU with the 

SPPO [21] considering transmission losses for case 3 

 
Methods 

 

Items 

SPPO [21] PSO-MU 

FT Gen FT Gen 

1 2 229.708  2 230.7420  

2 1 222.829  1 218.9839  

3 1 304.310  1 299.7028  

4 3 240.348  3 244.4580  

5 1 316.169  1 306.8470  

6 3 246.015  3 244.9148  

7 1 317.186  1 314.3372  

8 3 236.998  3 243.9950  

9 3 432.065  3 439.9140  

10 1 295.962  1 297.9250  

TP (MW/h) 2841.590 2841.8197  

PL (MW/h) 141.593 141.8197  

TC ($/h) 700.296 699.3436  

SCV -0.003 0.0000 

V. CONCLUSIONS 

An incorporated algorithm (PSO-MU) for solving the 

PEDP of power generators with multiple fuel sources has 

been proposed herein. The PSO helps the proposed method 

efficiently search and refined exploit. The MU assists the 

presented algorithm both of preventing out of shape of the 

ALF and leading to difficulty of solution finding. The 

proposed approach combines the PSO with the MU that has 

benefits of taking a large area of penalty parameters and a 

small population. Three cases of a practical ten-unit system 

are employed to compare the proposed PSO-MU with 

previous methods. Simulation results demonstrate that the 

proposed algorithm is superior to previous approaches in 

solution quality for solving the PEDP of units with multi-fuel 

changes. Contributions of this paper are the PSO accurately 

finds the optimal solution in the economic dispatch process, 

and the MU validly handles in system constraints 

management of power system. 
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