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Abstract— The cart-inverted pendulum system is one of the 

classical experimental systems that fully converges the complex 

properties of nonlinear control problems. It represents a class of 

real world systems such as two-wheeled mobile robots, 

pendubots, missile launchers and many more. The problems 

associated with it are always challenging topics in the field of 

control systems. This paper presents a novel technique to control 

this system stabilizing at a vertical upright position, its unstable 

equilibrium point. Simulation and experimental results will 

show a better performance of the proposed controller in 

comparison with Quadratic Optimal Regulator method under 

disturbance and change in mass. 

 

Index Terms—  Cart-inverted pendulum, Backstepping, DC 

motor, Quadratic Optimal Regulator. 

 

I. INTRODUCTION 

The cart-inverted pendulum system has two equilibrium 

points [1], [8] the stable point is at which the pendulum is 

pointing downwards and the unstable one is at which the 

pendulum is pointing upwards. The aim of designing a 

controller is to move and balance the pendulum from the 

stable equilibrium point to the unstable one. This is a 

challenging control problem because the system is highly 

unstable, nonlinear and underactuated. Different control 

agorithms are studied by many researchers, from classical 

PID controllers [2], [13] to advanced controllers such as 

fuzzy control [3], [14] neural networks [4], [15] and genetic 

algorithms [5], [16]. Recently, optimal control approach is 

one of the potential solutions for a given set of performance 

objectives [17], [21], with detail review in [6]. In [7] and [20], 

state space control using Linear Quadratic Regulator (LQR) is 

presented and successfully conducted. 

The goal of this article is to design controllers to swing up 

and balance the pendulum from a pending position to the 

vertical upward point. Swinging up the pendulum can be 

achieved by using an energy control [8], [18], [22]. At the 

vertical position, another controller is used to stabilize the 

pendulum. In this paper, a stabilizing controller based on 

backstepping technique [9], [10], [19], is designed and 

compared to the Quadratic optimal controller [11], [12], [23]. 

A switch is used to change controllers. This means, when the 

pendulum approaches a certain area, the stabilizing controller                                
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will replaces the swinging up controller to balance the 

pendulum at the vertical upward position. 

The paper is organized as follows. System model is 

provided in section II, including nonlinear dynamic model of 

the system, linearized model in state-space form and 

permanent magnet DC motor dynamics. Section III presents 

controller design. Then, section IV shows simulation and 

experimental results. Finally, Section 5 concludes this paper. 

II. SYSTEM MODELS 

A. Nonlinear Dynamic Model 

In our research, the model of inverted pendulum system is 

pre-designed and simulated on 3D Solidworks software. 

Then, an experimental setup is built as shown in Fig. 1. The 

setup consists of a movable cart driven by a DC motor 

according to the control voltage. The cart can move along a 

horizontal track. A pendulum is mounted on the cart and can 

freely rotate around its axis. 

 
                       Fig. 1: Snapshot of Real plant 

 

The inverted pendulum is an open-loop, unstable and 

highly nonlinear system. The objective of the controller is to 

balance the pendulum at its upward position. Parameters of 

the system are showed in table 1. 

 
 Fig. 2: Reference frames and parameters of pendulum 
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Figure 2 shows the reference frames and parameters of the 

system. The movement of the cart is constrained in the 

x-horizontal direction, and the pendulum can rotate in the x-y 

plane. The system has two DOF and can be fully represented 

using two coordinates: horizontal displacement of the cart, s; 

and rotational displacement of pendulum, φ. Coordinates of 

the Centre of Gravity (CoG) of the pendulum is given by: 

1 1 1
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Table 1: Parameters of the inverted pendulum 

Variable Unit Meaning 

  rad  

Angular displacement of the 

pendulum from the vertical upright 

position. 

s  m  Cart displacement. 

1
J  2.kg m  Moment of inertia of the pendulum. 

1
m  kg   Mass of the pendulum. 

m  kg  The mass of the cart 

1
a  

m  The distance from the CoG of the 

pendulum to the pivot. 

g  2/m s  Acceleration of gravity 

0
d  .Nm s  Friction coefficient with the rail 

1
d  .Nm s  Friction coefficient of pendulum 

m
R    Armature resistance of motor 

m
L  H  Armature inductance of motor 

m
K   Wb  Emf constant 

R  m  Pully radius 

 

Applying Euler-Lagrangian equation to the system yields: 
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where L is the Lagrange function defined as the difference 

between kinetic (T) and potential (V) energies:  L = T – V. 

 
2

2 2 2 2 2

1 1 1 1

1 1 1

2 2 2
cos sin     

  
T ms m s a a J     , 

1 1 1 0

1
cos ( )

2
  V m ga R d d q  

0 /[   s] ;    [   ] ,      T T
M Rq F  

 
2

1 1 1 1 1
( ) ( cos )


   



L
J m a m a s 

  

2

1 1 1 1 1 1 1
( ) ( cos ) ( sin )

 
     

 

d L
J m a m a s m a s

dt
   

  

1 1 1
( cos ) (m ) s


   



L
m a m

s
 

 
2

1 1 1 1 1
( m a cos ) (m m ) s sin

 
     

 

d L
m a

dt s
   

 

1 1 1 1
0( sin ) a g sin  ;           

 
  

 

L L
m a s m

s
  

     
2

1 1 1 1 1 1 1 1

2

1 1 1 1 1 0

0(J m a ) ( m a cos ) s sin

( cos ) ( ) m a sin

      

     

m a g d

m a m m s d s

   

    

      (3) 

          (q) q ,   D C G gq q q q q F
 

 
2

1 1 1 1 1

1 11 1 1

0 0

0

cos
(q) ;   , ;

sincos

    
    

      

D C
J m a m a

q q
m am a m m



 
 

   
 1 1 1

0

0

0 0

sin
;      ;

   
    
      

G g
d m a g

q
d



 

      
1

,
(q)

    
 

C G g
D

q F q q q q q

 
2

1 1 1 1 0

1 1 1 1

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1

2 2

1 1 1 1 1 1 0

1 1 1 1 1

2 2 2 2

1 1 1 1 1 1

cos sin
( )( sin )

cos (J )(m m ) (m m )(J m a ) m cos

( ) sin
cos ( sin )

cos ( )(m m )

 
   

     
     



  
  


  

M
m a m a d s

m m d m a g R

m a m a a
q

J m a m a d
m a d m a g

m a J m a

  
 

 

 
  

 2 2 2 2

1 1 1 1 1 1
(m m )(J m a ) m cos

 
 
 
 
 

     
 

    

M
s

R

a 

  

Linearizing the model, the following approximations are 

applied:
  0 1sin ;  cos        

Defining the state variables as below: 
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B. Linearized Model in State-Space Form  

Linearizing the inverted pendulum system results in:
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Table 2: List of Parameters 

Variable  Value  Unit  

1
J   0.0052 2.kg m  

1
m  0.43 kg  

m 1.3 kg  

1
a  0.157 m  

g 9.81 2/m s   

0
d  0.147 .Nm s   

1
d  0.00243 .Nm s   

 

Substituting the parameters given in Table 1 into (4), we 

obtain: 
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C. Permanent Magnet DC Motor Dynamics 

The relation between the armature current and the armature 

voltage can be written in Laplace form as: 

   
emfm m m m

U E I R sL  

where 𝑅m and 𝐿m are resistance and inductance of the rotor, 

respectively.  

The back-emf voltage created by the motor, Eemf, is 

proportional to the rotor speed as: 


emf m

E K  

The electromagnetic torque generated by the DC motor is 

proportional to the armature current:  


dt m m
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We have: 
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 From the above equations, we get the structure diagram of 

DC motor with feedback current using ACS 712 current 

sensor as follows:  

 

 
Fig. 3: Closed-Loop DC motor current Control System 

 

The response rate of the current controller is very fast, so 

the change from the feedback output is very small. Therefore, 

the feedback is considered as a noise. 

 

Table 3: List of Parameters. 

Parameter Value 

DC motor power ( P ) 120 W   

voltage (U ) 24 VDC   

Current ( I ) 5A     

DC motor speed ( n ) 1200Rpm   

rotor inertia (
DJ ) 4 22.10 .Kg m   

pully radius ( R ) 0.195 m   

Armature inductance of motor (Lm) 0.0281 H 

Armature resistance of motor (Rm) 0.34  

 

In the classical sense, a PI controller has the following 

transfer function:  
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Fig 4: Diagram simulating the current controller with the 

reference set point to 1 

 

The inner loop needs a fast response. Using PI controller 

with the above parameters, the system has a Settling Time of 

0.008s. Therefore, the designed PI controller meets the 

requirement. 

III. DESIGN OF CONTROLLERS 

A. Design and Simulation of inverted pendulum Quadratic 

optimal regulator problem  

The system equation in the state space is represented as 

  




x A x Bu

y Cx
 

We determine the matrix K of the optimal control vector 

u Kx   to minimize the performance index: 
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2
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Where Q and R are weighting matrices. In this problem, we 

assume that the control vector u(t) is unconstrained. The 

linear control law given by Eq. (8) is the optimal control law. 

The matrix K are determined by minimizing the performance 

index J,  then u(t) = –Kx(t) is the optimal control signal for 

any initial state x(0). The block diagram is shown in Fig 4.  

 

 
 Fig. 5: Block diagram of the optimal regulator system 
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In MATLAB, function “lqr” is used to get the 

corresponding feedback gain matrix K = lqr (A, B, Q, R), 

where Q is a positive semi-definite real symmetric matrix, R is 

a positive definite real symmetric matrix. Q and R are selected 

by experience.  

Q = diag ([5, 1, 500, 1]) and R = 1   

K=lqr (A, B, Q, R) 

 

Resulting in the optimal gain: 

   69.5225   10.2055  -22.3607  -15.6577K  

B. Backstepping linear design 

The new control variables are defined as: 
1 1 1 3z x k x   

where k1 is a design constant, and 
1 2 1 4z x k x  . Define x2 
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as the virtual control variable, for which the stabilizing 

function is chosen: 
1 1 1 1 4c z k x     where c1 is positive. In 

addition, the corresponding error state variable is defined as 

2 2 1z x   . So, we have: 
1 2 1 4 2 1 1z x k x z c z    . The 

derivative of z2 is computed as follows: 

2 2 1 2 1 4 1 2 1 1 4z x x k x c x c k x      . 

However, the desired dynamics of z2 can be defined: 

2 1 2 2z z c z    

From these above equations, we design a controller as 

below: 
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Analyzing stability of the system, we have: 

2 2

2 1 2 1 1 2 2 1 2 1 1

2 2

2 2 1 4 1 2 1 1 4 1 1 2 2

1 1
( )

2 2

( ) 0

V z z z z z z z z c z

z x k x c x c k x c z c z

      

       

 

 

This implies that z1, z2 are stable, the state trajectory 

approaches to the origin, so x1, x2 are also stable. Note that it is 

important to choose k1 appropriately to stabilize the 

closed-loop system. This means k1 is chosen so that x3, x4 are 

also approaches to zero. As a result, the backstepping 

controller not only keeps the pendulum at the vertical upright 

position, but also moves the cart to its original position. 

 

c1 c2 k1 

100 100 0.03 

  

C. Swing-Up Control 

Neglecting frictions and assuming pendulum as a rigid 

body, we obtain the equation of motion of the pendulum: 

  2

1 1 1 1 1

1 1

1
sin cos  J m a m a u

m a g
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We  choose  the energy  of  the  system  as  zero  in  the  

lower  position,  and normalize  it  by -mga1,  which  is  the  

energy  required  to  raise the  pendulum  from  the  hanging  

down  position  to  the horizontal  position.  The normalized 

energy can be then written as below: 

   2 2

1 1 1 1 1

1
1

2
    cosE J m a m a g  

Computing the derivative of E with respect to time we find: 
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     sinE J m a m a g

 

1 1
   . . cosE m a gu            

0 117.u s
 

Define the desired energy as E0 = 2m1a1g. The following 

control is a strategy for achieving the desired energy 

 1 1
    cosu m a g E Eo  

To change the energy fast, the magnitude of the control 

signal should be as large as possible. This is achieved with the 

control law: 

    . cos                               1  1  zu sign E Eok    

where kz is a design parameter. 

IV. SIMULATION AND EXPERIMENTAL RESULTS 

A. Simulation results 

Block diagram and simulation result of the controller 

using swing up in combination with Quadratic optimal 

control are shown in Figure 6 and Figure 7. 

 
Fig. 6: Block diagram of controllers using Quadratic 

Optimal Regulator (MATLAB Simulink). 

 

 
Fig. 7: Simulation of Swing-Up & Stabilization using 

Quadratic Optimal Regulator 

 

Block diagram and simulation result of the controller using 

swing up combined with backstepping control are show in 

Figure 8 and Figure 9. 

Fig. 8: Block diagram of controller using backstepping 

control 

 
Fig. 9: Simulation of Swing-Up & Stabilization using 

Backstepping control 
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Fig. 7 and Fig. 9 show that the transition time of the system 

using Quadratic optimal regulator is nearly 4 seconds, while 

using backstepping control is only 2.2 seconds. This means 

that the Backstepping control is much better than the 

Quadratic optimal regulator. 

B. Experimental results 

 
Fig. 10: Block diagram of experimental setup 

 

 
 

Fig. 11: Experimental Swing-Up & Stabilization 

using Quadratic Optimal Regulator 

 

 
Fig. 12: Experimental Swing-Up & Stabilization 

using Backstepping control 

 

Figure 10 shows the block diagram of the experimental 

setup. Experimental results of the controller using swing up 

combined with Quadratic optimal control in Figure 11 and 

with the backstepping control in Figure 12. It can be seen that 

control input u from a combination of a swing up controller 

and a stabilizing controller is able to move and balance the 

pendulum from its stable equilibrium point, x=[π,0 ,0,0]
T
, to 

its unstable equilibrium point, x=[0,0,0,0]
T
. We also see that 

the backstepping controller can guarantee a faster and 

smoother stabilizing process with less oscillation and more 

robustness than the Quadratic optimal regulator design.  

V. CONCLUSION 

The proposed controller has achieved that the closed-loop 

system is able not only to swing up and balance the pendulum 

from downward position to the upward equilibrium point, but 

also to return the cart to its original position on the rail. The 

pendulum is stable at its upward position. This proves that the 

control algorithm is effective. In additions, the performance 

of controller using backstepping technique is significantly 

better than that using Quadratic optimal regulator. 

Simulation and experimental results are almost similar. In 

experimental results, however, the pendulum still oscillates 

slightly around the equilibrium position. This could be due to 

the dynamic uncertainty, pinion backlash, motor dead-zone, 

magnetic hysteresis, and other mechanical imperfections. 

More details about the experiment and its results can be found 

at: https://m.youtube.com/watch?v=-RfKzVqG2Z0. 

Our future research is control design for the triple link 

inverted pendulum system, as shown in Fig. 13. 

 

 
    Fig. 13: 3D Solidworks Triple inverted pendulum system 
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