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 

Abstract— Camera networks are being deployed for various 

applications like security and surveillance, disaster response and 

environmental modeling. However, there is little automated 

processing of the data. Moreover, most methods for multicamera 

analysis are centralized schemes that require the data to be 

present at a central server. In many applications, this is 

prohibi-tively expensive, both technically and economically. In 

this paper, we investigate distributed scene analysis algorithms 

by leveraging upon concepts of consensus that have been studied 

in the context of multiagent systems, but have had little 

applications in video analysis. Each camera estimates certain 

parameters based upon its own sensed data which is then shared 

locally with the neighboring cameras in an iterative fashion, and 

a final estimate is arrived at in the network using consensus 

algorithms. We specifically focus on two basic 

problems—tracking and activity recognition. For multitarget 

tracking in a distributed camera network, we show how the 

Kalman-Consensus algorithm can be adapted to take into 

account the directional nature of video sensors and the network 

topology. For the activity recognition problem, we derive a 

probabilistic consensus scheme that combines the similarity 

scores of neighboring cameras to come up with a probability for 

each action at the network level. Thorough experimental results 

are shown on real data along with a quantitative analysis. 

 

Index Terms— Activity recognition, camera networks, 

con-sensus, distributed image processing, tracking. 

I. INTRODUCTION 

  Networks of video cameras are being installed in many  
applications, e.g., surveillance and security, disaster re-sponse, 

environmental monitoring, etc. Currently, most of the data 

collected by such networks is analyzed manually, a task that is 

extremely tedious and reduces the potential of the in-stalled 

networks. Therefore, it is essential to develop tools for analyzing 

the data collected from these cameras and summa-rizing the 

results in a manner that is meaningful to the end user Tracking 

and activity recognition are two fundamental tasks in this 

regard. In this paper, we develop methods for tracking and 

activity recognition in a distributed network of cameras.  
For many applications, for a number of reasons it is desir-able 

that the video analysis tasks be decentralized. For example, there 

may be constraints of bandwidth, secure transmission, and 

difficulty in analyzing a huge amount of data centrally. In such 

situations, the cameras would have to act as autonomous agents 

making decisions in a decentralized manner. At the same time, 

however, the decisions of the cameras need to be coordinated so 

that there is a consensus on the state (e.g., position, activity) of 

the target even if each camera is an autonomous agent. Thus, the  
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cameras, acting as autonomous agents, analyze the raw data 

lo-cally, exchange only distilled information that is relevant to 

the collaboration, and reach a shared, global analysis of the 

scene.  
Although there are a number of methods in video analysis that 

deal with multiple cameras, and even camera networks, 

dis-tributed processing in camera networks has received very 

little attention. In Section II, we will review the current state of 

the art in camera networks and will see that very few methods are 

capable of distributed analysis of video. On the other hand, 

dis-tributed processing has been extensively studied in the 

multi-agent systems and cooperative control literature [29]. 

Methods have been developed for reaching consensus on a state 

observed independently by multiple sensors. However, there is 

very little study on the applicability of these methods in camera 

networks. 

  
In this paper, we show how to develop methods for tracking 

and activity recognition in a camera network where processing is 

distributed across the cameras. For this purpose, we show how 

consensus algorithms can be developed that are capable of 

con-verging to a solution, i.e, target state, based upon local 

deci-sion making and exchange of these decisions (not sensed 

data) among the cameras. We focus on two problems. For 

distributed tracking, we show how the Kalman consensus 

algorithm [28] can be adapted to camera networks taking into 

account issues like network topology, handoff and fault 

tolerance. For activity recognition, we derive a new consensus 

algorithm based upon the recognized activity at each camera and 

the transition prob-abilities between various activities. 

Experimental results and quantitative evaluation for both these 

methods are presented. Note that here we assume ideal 

communication between cam-eras which are connected, i.e., 

communication is not a bottle-neck. This proposed work is a 

proof-of-concept study in using distributed processing 

algorithms for video analysis. In the fu-ture, the practical 

constraints of using consensus algorithms in camera networks 

should be considered. 

 

We start with a review of consensus algorithms for distributed 

estimation. Thereafter, in Section IV, we present a variant of the 

Kalman-Consensus approach for distributed tracking in the 

camera network and show experimental results, that are 

ana-lyzed quantitatively. In Section V, we study the problem of 

ac-tivity recognition in a consensus framework. For this purpose, 

we derive a completely new algorithm that shows how local 

de-cisions at each camera node can be combined to come up 

with a consensus on the state representing the activity. Again, 

exper-imental results are shown and analyzed. 
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II. PAST WORK ON SCENE ANALYSIS IN CAMERA 

NETWORKS 

 
Our review of scene analysis algorithms will be limited to 

those directly related to the application domain of camera 

net-works.  
There have been a few papers in the recent past that deal 

with networks of video sensors. Particular interest has been 

fo-cused on learning a network topology [21], [40], i.e., 

config-uring connections between cameras and entry/exit 

points in their view. Some of the existing methods on tracking 

over the net-work, include [34], [37]. Other interesting 

problems in camera networks, like object/behavior detection 

and matching across cameras, camera handoff and camera 

placement have been ad-dressed in [1], [10], [16], [39], and 

[46]. There has also been recent work on tracking people in a 

multicamera setup [8], [17]. However, these methods do not 

address the issue of distributed processing. 

  
In [22], a distributed target tracking approach using a 

cluster-based Kalman filter was proposed. Here, a camera is 

selected as a cluster head which aggregates all the measurements 

of a target to estimate its position using a Kalman filter and 

sends that esti-mate to a central base station. Our proposed 

tracking system dif-fers from this method in that each camera 

has a consensus-based estimate of the target’s state and, thus, 

there is no need for addi-tional computation and communication 

to select a cluster head. As will be described in Section IV, we 

apply in a special way the distributed Kalman-Consensus filter 

[28] which has been shown to be more effective than other 

distributed Kalman filter schemes. Consensus schemes have 

been gaining popularity in computer vision applications 

involving multiple cameras [41]. A related work that deals with 

tracking targets in a camera net-work with PTZ cameras is [33]. 

Here, the authors proposed a mixture between a distributed and a 

centralized scheme using both static and PTZ cameras in a 

virtual camera network envi-ronment. Our approach to tracking 

in the camera network, how-ever, is completely distributed using 

consensus algorithms. An-other problem that has received some 

attention in this context is the development of distributed 

embedded smart cameras [3]. The focus of this paper, however, 

is on the algorithm side, rather than building a specific smart 

camera architecture. 

  
The problem of multiview activity recognition have been 

ad-dressed in many papers, e.g., [44] and [45], but the 

information of multiple views is fused centrally. Our proposed 

framework is decentralized: each camera determines a 

probabilistic measure of similarity of its own observed activities 

to a predefined dictio-nary and information is dispersed to 

compute a consensus-based estimate. A preliminary framework 

for distributed tracking and control in camera network was 

presented in [38]. However, in-stead of only considering 

target-based network topology [38], in this paper we also 

define a network topology based upon com-munication 

constraints which is more important in practice. Be-sides 

tracking through consensus, we also address another 

fun-damental task of distributed activity recognition, derive a 

prob-abilistic consensus scheme, and show experimental 

results on real data with a quantitative analysis. 

III. CONSENSUS ALGORITHMS FOR DISTRIBUTED 

ESTIMATION 
 

In the multiagent systems literature, consensus means that the 

agents reach an agreement regarding a certain quantity of 

in-terest that depends upon the measurements of all sensors in a 

network. The network may not be fully connected, so there is no 

central unit that has access to all the data from the sensors. 

Consequently, a consensus algorithm is an interaction rule that 

specifies information exchange between a sensor and its 

neigh-bors that guarantees that all the nodes reach a consensus. 

The in-teraction topology of a network of sensors is represented 

using 

a graph  with the set of nodes  

and edges . Each sensor node  main-  
tains an estimate  of a quantity . Consensus is  
achieved when , which is an n-dimensional  
subspace of . A thorough review of consensus in networked 

multiagent systems can be found in [29]. Here we briefly review 

some of the basic approaches needed for this paper. 
 
A.  Brief Review 
 

In a network of agents, consensus can be defined as reaching 

an agreement through cooperation regarding a certain quantity of 

interest that depends upon the information available to 

mea-surements from all agents. An interaction rule that specifies 

the information exchange between an agent and all of its 

neigh-bors in the network and the method by which the 

information is used, is called a consensus algorithm (or 

protocol). Cooperation means giving consent to providing one’s 

state and following a common protocol that serves group 

objective.  
For example, in a network of temperature sensor, the 

sensors’ estimates of temperature could be different due to 

sense noise and local variation. The sensors then interchange 

information with their neighboring sensors, and use the 

information to re-fine their local estimates. Consensus is 

reached when all sensors agree on a single value.  
Distributed computing [20] has been a challenging field in 

computer science for the last few decades. A lot of work has 

been done on consensus algorithms which formed the baseline 

for distributed computing. Formally the study of consensus 

orig-inated in management science and statistics in 1960s (see 

[6]). The work in [42] on asynchronous asymptotic agreement 

prob-lems in distributed decision making systems and parallel 

com-puting [2] were the initial works in systems and control 

theory on a distributed network. A theoretical framework for 

defining and solving consensus problems for networked 

dynamic sys-tems was introduced in [30] building on the earlier 

work of [11]. Consensus algorithms for reaching an agreement 

without com-puting any objective function appeared in the work 

of [15]. Fur-ther theoretical extensions of this work were 

presented in [35] with a focus towards treatment of directed 

information flow in networks. In [15], a formal analysis was 

provided for emergence of alignment. The setup in [30] was 

originally created with the vision of designing agent-based 

amorphous computers for col-laborative information processing 

in networks. Later, [30] was used in development of flocking 

algorithms with guaranteed convergence and the capability to 

deal with obstacles and ad-versarial agents [27]. Recent works 
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related to multi agent net-worked systems include consensus 

[19], collective behavior of flocks and swarms [27], sensor 

fusion [28], random networks [13], synchronization of coupled 

oscillators [32], algebraic con-nectivity of complex networks 

[26], asynchronous distributed algorithms [23], formation 

control for multi robot systems [9], dynamic graphs [24], and 

complexity of coordinated tasks [14]. The goals of most 

consensus algorithms usually include [12]:  
1) Validity: The final answer that achieves consensus is a 

valid answer.  
2) Agreement: All processes agree as to what the agreed 

upon answer was by the end of the process.  
3) Termination: The consensus process eventually ends 

with each process contributing.  
4) Integrity: Processes vote only once. 

  
Many consensus algorithms contain a series of events (and 

re-lated messages) during a decision-making round. Typical 

events include Proposal and Decision. Here, proposal typically 

means the communication of the state of each agent and decision 

is the process of an agent deciding on proposals received from 

its neighbors after which it is not going to receive any proposal 

from the neighbors to come a different conclusion. In our 

appli-cation domain of camera networks, the agents are the 

cameras and the state vector we are trying to estimate are the 

position and velocity of a set of targets and the ID of an activity 

based upon a learned dictionary of activities. 

 
B.  Consensus in Distributed Camera Networks 
 

In distributed camera networks, the cameras act as 

au-tonomous agents. Each camera determines its own 

estimate of the object’s state (e.g., position, activity label). 

The cameras then share local estimates with their neighboring 

cameras in an iterative fashion, and a final estimate is arrived 

at in the network using consensus algorithms [29]. 

  
1) Distributed Tracking: There have been recent attempts to 

achieve dynamic state estimation in a consensus-like manner. In 

contrast to a central Kalman filter where state information 

coming from several sensors is fused in a central station, 

dis-tributed Kalman filters (DKF) compute a consensus-based 

esti-mate on the state of interest with only point-to-point 

commu-nication between the sensors [28]. A distributed Kalman 

fil-tering (DKF) strategy that obtains consensus on state 

estimates was presented in [28]. The overall performance of this 

so-called Kalman-Consensus filter has been shown to be 

superior to other distributed approaches. It is on this DKF 

strategy that we base our distributed tracking algorithm. The 

mathematical details are presented in Section IV-A. 

  
2) Distributed Activity Recognition: There have been 

methods on multiview activity recognition [44], [45], but the 

information of multiple views is fused centrally. In this paper, 

we propose a framework for distributed activity recognition. 

Each camera determines a probabilistic measure of 

similarityof its own observed activities to a predefined 

dictionary, and then disperses this information to compute a 

consensus-based estimate with only point-to-point 

communication between the cameras. We show 

mathematically how to compute this consensus based upon 

the similarity score computed at each camera and the 

transition probabilities between activities (can be uniform if 

no prior information is available). 

IV. DISTRIBUTED TARGET TRACKING USING 

KALMAN CONSENSUS FILTERING 
 

In this section, we present the first major result of this 

paper—how to track multiple targets in a camera network 

using a consensus algorithm that relies on the tracks obtained 

at individual cameras. For this purpose, we leverage upon the 

Kalman-Consensus algorithm in the distributed processing 

and multiagent systems literature [28], [29]. However, there 

are some major differences due to the nature of cameras, and 

we show how to handle them.  
Cameras are directional sensors and, thus, geographically 

neighboring cameras may be viewing very different portions 

of the scene. On the other hand, cameras that are 

geographi-cally far away may be observing the same target. 

Therefore, we can define a target-based network topology, 

where the neighborhood structure is defined with respect to 

each target. Since targets are dynamic, this target-based 

topology changes over time. However, the communication 

constraints due to bandwidth limitation or physical network 

connection, which is most important in practice, naturally 

determine the communi-cation-based topology of network. 

The communication-based topology is somewhat static, since 

the bandwidth limitation or physical connection won’t change 

in a short time period. The distributed tracking is achieved by 

considering both the communication and target-based 

network topologies. In the next section, we will describe this 

process in more detail. Also, we will show how to take into 

account the handoff of targets as they move between cameras. 
 
A.  Problem Formulation 
 

Let  be the set of all cameras in the network. We can then 

define the subset of all cameras viewing target  as   
and the rest of the cameras as . Each camera  will  
also have its set of neighboring cameras . Based upon the 

communication constraints due to bandwidth limitation and 

network connection, we define the set  as all the cameras with 

which  is able to communicate directly. In other words,  can 

assume that no other cameras other than its neighbors  exist as 

no information flows directly from non-neighboring cameras to 

. Note that the set of neighbors need not be geographical 

neighbors. We also define the set of overlapping cameras of   
as ; since all the cameras can change their PTZ parame-ters 

and have therefore several possible fields of view, we define the 

set  as all the cameras with which  can potentially have an 

overlapping field of view. By definition, it becomes clear then  
that for each , it is true that . We define  

 as the connected component that  is in. We assume 

, that is to say,  is able to exchange information with its 

overlapping cameras directly or via other cameras (Assump-  
tion  ). An example of the camera network is shown in Fig. 1. 

As mentioned earlier, we propose a special application of the 

Kalman-Consensus Filter presented in [28] to solve the problem 

of finding a consensus on the state vectors of multiple targets in 

a camera network. We consider the situation where targets are 

moving on a ground plane and a homography between each 
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camera’s image plane and the ground plane is known. We will 

show how the state vector estimation for each target by each 

camera (i.e., each camera’s estimates based upon its individual 

measurements) can be combined together through the consensus 

scheme. This method is independent of the tracking scheme 

em-ployed in each camera, which may or may not be based upon 

the Kalman filter. 

 

B.  Kalman-Consensus Tracking 
 

 
results. 

 

Case 1:  is the sensed target position  on 

 

the ground plane based upon the precomputed homography 

be-tween image plane and ground plane. We use a subscript to 

represent this case, i.e. 

 
Our special implementation of the Kalman-Consensus 

dis-tributed tracking algorithm is presented in Algorithm 1. We 

de-scribe it for the general system model of (1) and (2) and is 

ap-plicable for the two special cases described previously. This 

al-gorithm is performed in a distributed fashion by each camera 

node . At each time step  and for each target  , we assume 

we are given the prior estimated target state  and the error 

covariance matrix  at  using measurements up to and in- 

  
cluding time  . At time step , the Kalman-Con-  
sensus filter is initialized with  and   
average of  's of cameras viewing  . 

 

 
Comparing with the Kalman filter with centralized fusion 

(i.e., all the cameras send their measurements to a central 

pro-cessor, and tracking is preformed centrally, see Appendix 

A), we can see the fundamentals of Kalman-Consensus tracking 

al-gorithm described in Algorithm 1. If  is viewing a target  , 

it obtains  ’s measurement  and computes the corresponding 
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Fig. 1. Conceptual illustration of camera network topologies.  is the subset 

of all cameras viewing target  and the rest of the cameras are  .  
 is the set of neighboring cameras of  and defined as all the cameras with 

which  is able to communicate.  is the set of overlapping cameras of , and 
is defined as all the cameras with which  can potentially have an 
overlapping field of view. 

 

information vector  and matrix  . Similar to [31], we de-  
fine the information matrix and vector of  as   
and  by assuming that their output matrices are zero, i.e.,  

 for all  to avoid any ambiguity arising from  
the lack of measurements in these cameras. If  and  
the communication graph for  is fully connected, such that  

 can receive information from all the other cameras viewing 

the same target, by fusing information vectors and matrixes, the 

local state estimation at  is the same as central estimation. 

However, in the more typical situation, the neighbors of each 

cameras are different; therefore, at each time instant the 

infor-mation each camera receives to fuse may also be different. 

There is no guarantee that the state estimates at different cameras 

re-main cohesive. Thus, a consensus step is implemented right 

as part of the estimation step. By comparing the fusion step (5) 

and Kalman-consensus state estimation step (6) in Algorithm 1 

with the centralized state estimation (26) in Appendix A, it can 

be seen that our Kalman-consensus filter is essentially a 

distributed implementation of the centralized case with the 

consideration of communication constraint by adding a 

consensus term in (6). It is proved in [28] that all estimators 

asymptotically reach an un- 

 

biased consensus, i.e., . 

  
As shown in Algorithm 1, the information vector  and  

exchanged between camera nodes are computed with 

measure-ment  , covariance matrix  and output matrix  . 

Consider  
the two cases of measurement   and   as in (3) and (4).  
We denote their corresponding information vector and matrix  
as   and  , respectively. The following  
shows that   and  .   

Recall that   and   are the measurements on ground   
plane and on the image plane of , respectively and  is the 

mapping from ground plane to the image plane. It is obvious 

that 

 

 

 
Since the information message exchanged between 

cameras are the same for both cases of  , whether the 

measurement  is measured on ground plane or image plane 

does not affect the tracking algorithm; these two cases give 

the same result.  
 

C.  Handoff and Fault Tolerance 
 

Through this algorithm, each  has a consensus-based 

ground plane state estimate of each target that is being viewed  
by the cameras with which  can exchange information directly 

or indirectly, even if  has never seen some of the targets. Since 

we are assuming that the network of cameras as a whole is 

always covering the entire area under surveillance, each target 

will always be seen by at least one camera. Also, by our 

definition of overlapping cameras, a target  will always move 

from one camera ’s FOV to the FOV of an overlapping  
camera  . Moreover, by Assumption  ,  can 

exchange information with its overlapping cameras,  , 

directly or via other cameras. Therefore,  can take over the 

tracking of  and find the target correspondence in a 

seamless way since it had knowledge of  ’s ground plane 

position through the consensus-tracking before it even 

entered its FOV. Additional target features could be used to 

find the target correspondences in a cluttered scene.  
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Another advantage of the fact that cameras have knowledge 

of all the targets in their neighborhood is that in the event of a 

sudden failure of camera node , the targets that were viewed 

by  are not suddenly lost by the camera network. 

We have also considered the fact that a camera may take a 

short amount of time to change its parameters to a new 

position in a nonstatic camera network. If no camera is 

viewing the target for the short amount of time it takes for the 

cameras to come to a new set of parameters to cover the entire 

area, the target state estimate and covariance continue to 

propagate by (7). This does not translate to a significant 

decrease in tracking performance as seen in our experiments. 

 

D.  Experimental Results 
We tested our approach for tracking in a real camera network 

composed of 10 PTZ cameras looking over an outdoor area of 

approximately 10000 sq. feet. In the area under surveillance, 

there were eight targets in total that were to be tracked using our 

distributed Kalman-Consensus filtering approach. In our 

experiment, the measurements (i.e., the observed positions of 

targets) are obtained using histogram of gradient (HOG) human 

detector [5]. The association of measurements to targets is 

achieved based upon appearance (color) and motion 

infor-mation. Fig. 2 shows the tracking results as viewed by each 

camera at four time instants.  
The results are shown on a nonstatic camera network. The 

cameras are controlled to always cover the entire area under 

surveillance through a game theoretic control framework we 

proposed in [38]. As explained previously, the change of 

camera settings does not affect the procedure of the 

Kalman-consensus filter. Fig. 2(a) shows the initial settings of 

the camera network that covers the entire area. As the targets 

are observed in this area, the single-view tracking module in 

each camera deter-mines the ground plane position of each 

target in its FOV and sends that information to the 

Kalman-Consensus filter which processes it together with the 

information received from the Kalman-Consensus filters of 

neighboring cameras as described in Section IV.  
Fig. 2(b) shows the instant when a camera  is focused on 

a target . Fig. 2(b) and (c) shows the dynamics of the targets 

in the camera network. All targets are tracked using the 

Kalman-consensus scheme, although we show the marked 

track for only one target. The handoff of  is clearly shown 

in Fig. 2(d) from  to . It is to be noted that every time a 

target goes from one camera’s FOV into another one, or when 

a camera changes its parameters, the network topologies for 

the targets, i.e.,  and  , also change.  
Fig. 3(a) shows the distributed Kalman-Consensus tracks 

for the eight targets. The measurements of the different 

cameras are shown in a light gray color. As can be seen, the 

Kalman-Consensus filter in each camera comes to a smooth 

estimate of the actual state for each target. 

  
Fig. 3(b) shows the distributed tracking results on the 

ground plane for one of the targets,  . The dots correspond 

to the ground plane measurements from different cameras 

viewing the target while the solid line is the consensus-based 

estimate. As can be expected, the individual positions are 

different for each camera due to calibration and single-view 

tracking inaccura-cies. As can be seen clearly, even though  

is time varying, the Kalman-Consensus filter estimates the 

target’s position seam-lessly at all times. 

In Fig. 3(a) and (b), the cameras that are viewing the same  
target can communicate with each other directly, i.e.,  is a 

fully connected graph. As shown in Section IV-B, the results are 

exactly the same as a centralized case similar to each cluster of 

[22]. We denote the results of this fully connected case as KCF1. 

In order to show the effect of the network communication 

topology on the Kalman-consensus tracking, we consider an 

example of a partially connected network, which is shown on the 

right-top of Fig. 3(c). Compared to the fully connected one, 

direct communication does not exist between camera 1 and 

camera 3, neither between camera 4 and camera 8. Fig. 3(c) 

shows the KCF tracking results at Camera 1 for this case, which 

is denoted as KCF2. It is slightly different with KCF1, due to the 

difference of fused information. The consensus method is 

guaranteed to have the same result as centralized case if there are 

no limitations on the communication capabilities. In the case of 

partial connection between cameras, KCF will converge to the 

same estimate centralized result as the number of consensus 

iterations goes to infinity [28]. However, the limited 

communication will result in differences from the centralized 

result for finite steps [as shown in Fig. 3(c)]. However, even in 

this case, the consensus result is better than that obtained at each 

individual camera, as shown in Fig. 3(d) and explained in the 

following.  
In order to measure tracking performance, we compare the 

tracking results with the groundtruth trajectory, which is shown 

in Fig. 3(c). In the table at the bottom, we show the minimum, 

maximum and average distances to the groundtruth of KCF1, 

KCF2, and individual camera tracks. It can be seen that KCF1 

performs best and KCF2 is better than individual camera tracks. 

We also look at the output error covariance matrix  of the 

Kalman filter. The higher the trace of  is, the lower the tracking 

accuracy is. Fig. 3(d) shows the traces of the covariance matrix 

of the tracking error for the same target as in Fig. 3(b) and (c). 

The colored lines with symbols correspond to tracking results 

from different cameras using their own measurements only (as 

each camera runs an independent Kalman filter), while the solid 

black line is the result of consensus-based estimate for the fully 

connected case (which will be the same for the centralized case) 

and dashed purple line is for the partially connected one. As can 

be seen clearly, the Kalman-Consensus filter with full 

connec-tion performs the best, and partially connected one does 

better than individual Kalman filters without consensus. 

 

V. DISTRIBUTED ACTIVITY RECOGNITION 

THROUGH CONSENSUS 
 

In this section, we consider the problem of activity 

recog-nition in a camera network where processing power is 

distributed across the network and there is no central 

pro-cessor accumulating and analyzing all the data. Each 

camera computes a similarity measure of the observed 

activities in its views against a dictionary of predefined 

activities. Also, the transition probability between activities is 

known. This is a common assumption used in many activity 

recognition approaches and can be learned a priori from 

training data [4], [7], [18], [25], [36]. If no such information is 

available, the transition matrix can be assumed to be uniform. 

Based 
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Fig. 2. Each subfigure shows ten cameras at one of four time instants 

denoted by . The track of one target, marked with a box, is shown. All targets 

are tracked using the Kalman-Consensus filtering approach, but are not 

marked for clarity. (a) ; (b) ; (c) ; (d) 

 

upon the computed similarities at each camera node and the 

learned transition matrices, we show how to compute the 

consensus estimate in a probabilistic framework. Essentially, 

the consensus is a probability of similarity of the observed 

activity against the dictionary taking into account the 

deci-sions of the individual cameras. 

 

A.  Problem Formulation and Main Result 
 

Let us assume that there are  cameras viewing a person 

per-forming some actions. The observation of camera  in the 

th 

time interval is denoted as  , . Let  be  
the collection of observations from all the cameras, i.e.,   

. Its history is .  
The problem of activity recognition can be formulated so as to  
estimate the conditional probability,  , where  

 is the label of the class of activity in a dictionary of  
 activities with history .  
It is a somewhat general assumption that the state 

transitions of activity class  are governed by the transition 

matrix for a first-order Markov chain [36] 
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until either a predefined iteration number is reached 

or  is smaller than a predefined  
small value 

 
end for  
 

Based upon the previously mentioned argument, we have 

the activity recognition algorithm described in Algorithm 2 

for each camera in the network.  
Regarding the normalization factor  , we have the 

fol-lowing result (see Appendix C for details). 

 

 
Based upon the network topology defined in Section IV-A, 

each camera can only communicate with its neighbors. 

Ac-cording to this local activity recognition algorithm, there 

is no guarantee that the estimates remain cohesive among 

nodes. We use an ad hoc approach by implementing a 

consensus step right after the estimation step to reduce the 

disagreement regarding the estimates obtained in Result 3, 

from which Algorithm 2 can be inferred. This consensus 

approach is similar to the one proposed in [28] for the 

Kalman-Consensus filtering. However, a number of iterations 

are done in each time segment so as to converge to a 

consensus estimate.  
The cameras that exchange information in the consensus stage 

are defined based upon the communication constraints; 

therefore, it is possible that a camera involved in the consensus 

does not view the activity. In this case, such a camera transmits 

a value of , i.e., by assuming equal likelihood for 

all possible action classes. 
 
B.  Experimental Evaluation 
 

To validate our proposed consensus approach for activity 

recognition, we carried out an experimental evaluation. We 

did activity recognition using multiple cameras and came to a 

consensus about the actions taking place using the theory of 

Section V-A.  
For this, we used the IXMAS dataset [45]. In the dataset, 

there are sequences of images of different people doing 

sev-eral actions. The extracted silhouettes of the people in 

those ac-tions are also given in the dataset. Five cameras were 

used to capture the whole activity which were placed at pan 

and tilt  
angles of  ,  ,  ,   and  

 , where 0  pan angle means looking at a person from 

the front and 90  means to look at him from the left. A 3-D 

motion-model of each person doing the actions is also given 

which has approximately 3500 voxels on a person.  
We used the 3-D motion-model as our training data and the 

silhouettes extracted from each camera as our test data. To build 

our training database, we took the orthographic projection 
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Fig. 3. Tracking results. (a): Distributed Kalman-Consensus tracking 

trajectories for 8 targets. Measurements from all cameras are shown in a light 

gray color. 
(b): Tracking results on the ground plane for one of the targets  . In (a) and 
(b), the cameras that are viewing the same target can communicate with each 
other  
directly, i.e.,  is a fully connected graph. The results are exactly same as 

centralized case. We denote the results of this full connection as KCF1. (c): 

KCF tracking results at Camera 1 given an example of a partially connected 

camera network, which is shown on the top-right. This case is denoted as 

KCF2. We can see that Cam (1,3) and Cam (4,8) cannot communicate. The 

groundtruth trajectory is also marked. The comparison of tracking 

performances (minimum, maximum and average distances to the 

groundtruth) of KCF1, KCF2 and individual camera tracks are shown in the 

table at the bottom. (d): Trace of the error covariance of the tracking results 

for the same target shown in (b) and (c) 

 

of the 3-D voxels on an image plane by rotating our virtual 

camera around the model with pan angles from 0  to 330  in 

increments of 30  and for each pan angle we used tilt angles of 

10  and 30  . The actions we used in our experiments from the 

dataset are: looking at watch, scratching head, sit, wave hand, 

punch, kick and pointing a gun. These are later referred to as 

Actions 1 through 7. For each action and each camera 

viewpoint, we extracted the shape silhouette using 40 

landmarks, i.e. 40 uniformly distributed contour points per 

shape in each frame. In a similar fashion we extracted the 

shape sequences of the test data, i.e. the silhouettes from 

different camera views.  
For matching two shape sequences, we used a shape-based 

activity recognition algorithm based upon work in [43]. The 

dis-tance between two shape sequences is measured by 

comparing the mean shapes of the two sequence. Then we took 

the recip-rocal of the distance measure to get a similarity 

measure be-tween two shape sequences and normalized the 

similarity mea-sures to convert them to probabilities. A block 

diagram of the overall activity recognition process is given in 

Fig. 4.  
The activity recognition is performed individually in each of 

the cameras depending upon its own current observation. In our 

experiment, we have five cameras, i.e. cam0, cam1, cam2, cam3, 

and cam4. We consider a network topology where the net-work 

is not a full mesh, rather each camera is connected to two other 

cameras only. So, after the activity recognition stage, each 

camera shares the detection result with its immediate neighbor. 

Each camera fuses the detection results of itself and its neigh-  
bors, final detection result from the previous time step , 

and the transition probabilities between different actions, and 

gets a new probability distribution of the actions. After this 
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stage, the cameras initiate the consensus algorithm and try to 

converge to the same detection results.  
In Fig. 5, we show the similarity matrices, i.e. the proba-bility 

of match for each test activity (the row of a matrix). The more 

white the cell block is, the test data it refers to is detected 

 

 
Fig. 4. Block diagram of the activity recognition process. For training using 

the 3-D action models, orthographic projections were taken for different 

viewing angles. From the projections, shape sequences were extracted from 

which the mean shape was calculated for each viewing angle. For testing, in 

similar way the mean shape were extracted. The Euclidean distance between 

the mean shapes were computed by comparing the test mean shape to all the 

training mean shapes. The ones with the lowest distance was selected for 

each action in the dictionary. Taking the reciprocal of the distance measure 

and normalizing it so that the sum of all the similarities is 1 gave the 

similarity measure of the actions. 

 Fig. 5. (a)–(e) Similarity matrices of the activities for the cameras cam0, 
cam1, cam2, cam3 and cam4; (f) Similarity matrix of the activities for the 
consensus of all these cameras. Actions 1 through 7 are looking at watch, 
scratching head, sit, wave hand, punch, kick and pointing a gun, 
respectively, all from the IXMAS dataset. 

 

with more probability as that action. Five of the images 

rep-resent the similarity matrix for the test data captured by 

each camera and the sixth image shows the similarity matrix 

of the consensus for all of these cameras. The similarity scores 

of cor-rect matching are the diagonal values of the similarity 

matrix. Comparing with other values in the matrix, the higher the 

di-agonal values (brighter in the image) are, the less confusing 

the recognition result is. By comparing the similarity matrix of 

con-sensus with the test data captured by each camera [compare 

(f) with (a)–(e)], it is clear that the recognition result after 

con-sensus has less confusion than others.  
Next, in Fig. 6(a), we show a graphical representation of the 

final detection result for a sequence of punch-kick-punch-kick, 

by plotting the result of the consensus stage in each time step. 

The vertices in each line at each time step, represent the 

prob-ability of a particular action in the dictionary. It was 

assumed  
that in time step , all the activities were equally likely. As an 

example, we use a nonuniform transition matrix where there is 

high transition probability between punch and kick, and there is 

also some moderately high transition probability be-tween 

looking at watch, scratch, sit, wave hand and point. The 

transition matrix between different actions is shown in Fig. 6(b). 

In practice, if some prior knowledge is available, the transition 

matrices can be learned/manually set. As the transition 

proba-bility between punch and kick is high, it can be seen that 

the recognition result (after consensus) keeps on improving.  
Finally, we generate a statistics to observe the performance 

of the probability of correct match for individual cameras 

versus their consensus. We use every possible subset of the 

five cam-eras by considering five, four, three and two cameras 

to deter-mine their consensus and show that the consensus 

result is better than an individual camera, on average. This 

result shows the fault tolerance aspect of the consensus 

process. The result is shown in Fig. 7. 
 
C. Discussion 
 

• Experimental Setup: We did the experiments by running 

the algorithms on independent threads, one for each 

camera, and communication between the threads using 

existing protocols. We assume here that communication is 

not a bottleneck. This proposed work is a proof-of-concept 

study in using distributed processing algorithms for video 

analysis. Future work should consider the practical 

con-straints of using consensus algorithms in camera 

networks.  
• Temporal Segmentation for Activity Recognition: In our 

distributed activity recognition procedure, the video 

se-quence is divided into segments, where each segment 

is treated as a observed variable (image features) and 

associated with a hidden variable (activity state). In our 

experiments, in order to provide a clear comparison of 

our results with ground truth, the observed sequence 

from each camera is temporally segmented based upon 

the ground truth. In practice, such a precise segmentation 

is not required; the observed sequence can be uniformly 

divided into short segments (e.g., 4 s each). Since our 

activity recognition results are represented in the form of 

probabilities, the nondominant recognition results on the 

segments where activity transitions happen won’t affect 

the recognition on their subsequent segments.  
Synchronization: The cameras in the network have been 

presynchronized, however, the frame synchronization may 
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Fig. 6. (a): Graphical representation of the final detection result, i.e. the result 
of the consensus stage in each time step, for the sequence 
punch-kick-punch-kick. The vertices in each line at each time step represent 
the probability of a particular action. It was assumed that in time step , all the 
activities were equally likely. We use a nonuniform transition matrix, as 
shown in (b), where there are high transition probability between the punch 
and kick, and there is also some moderately high transition probability 
between looking at watch, scratch, sit, wave hand and point. 
 

 Fig. 7. Comparison of average probability of correct match for individual 

camera and their consensus for all the activities. Their are seven sets of bars 

for seven different actions and in each set, there are five bars where the 

leftmost one (blue) is the average probability of correct match for individual 

cameras and the next four bars the average probability of correct match of the 

consensus over all the combinations of cameras taking, respectively five, 

four, three and two out of five cameras. 

 

not be perfect due to slight frame rate difference between 

cameras. So the transmitted information between cameras 

includes a time stamp. In the distributed tracking frame-work, 

when a camera fuses the information (e.g., state es-timations) 

from its neighboring cameras, it will do interpo-lation of the 

information vector  (in Algorithm 1) as nec-essary. This will 

ensure that the information being fused is synchronized. While 

the activity recognition is done on each segment, unlike the 

frame based Kalman-consensus tracking, a precise 

synchronization of the cameras is not needed; precision of 

presynchronization is enough.  
• Selection of Parameters: We can see that the consensus 

step in Algorithm 2 is a gradient descent algorithm that  
minimizes the cost function    

 . The step-size  should be a small number. The 

choice of  is based upon reasoning similar to what is used 

for gradient descent. The simplest way is to set  a fixed 

small number, while some suggest using an adaptive 

step-size. In our experiments, the step-size  is fixed at 

0.01.  
• Integration of tracking and activity recognition: Since 

the distributed tracking and activity recognition can be 

achieved through analogous frameworks (though the 

de-tailed fundamentals are different) by estimating 

locally and fusing through consensus, it is possible to 

integrate these two by designing integrated local 

estimation and fusion schemes. We address the 

integration as a future work. 
 

VI. CONCLUSION AND FUTURE WORK 
 

We investigated in this paper distributed scene analysis 

al-gorithms by leveraging upon concepts of consensus. We 

ad-dressed two fundamental tasks—tracking and activity 

recogni-tion in a distributed camera network. We proposed a 

robust ap-proach to distributed multitarget tracking in a network 

of cam-eras. A distributed Kalman-Consensus filtering approach 

was used together with a dynamic network topology for 

persistently tracking multiple targets across several camera 

views. A proba-bilistic consensus scheme for activity 

recognition was provided, which combines the similarity scores 

of neighboring cameras to come up with a probability for each 

action at the network level. In the future, we will look at the 

integration of tracking and ac-tivity recognition into a single 

framework and more complex activities that span a larger area. 
 

APPENDIX A  
KALMAN FILTER WITH CENTRALIZED INFORMATION FUSION 

 
Consider a Kalman filter with centralized information fusion, 

i.e., each camera sends its observation to a central processor, and 

tracking (i.e. state estimation) is performed centrally. As in (2),  
the sensing model at camera  of target  is  . 

Thus, the central measurement, observation noise and 

observa-tion matrix are defined as  
 

 

. . . (18) 

. . .  

. . .   



                                                                              

Tracking The Distributed Camera Networks  Through Using Kalman 

                                                                                                   59                                                                           www.ijeas.org 

 

 By comparing (26) with Algorithm 1 where each camera 

fuses its information vector and matrix and those from its 

neighbors, it is clearly shown that Kalman-consensus filter is 

a distributed im- 

plementation. If  is a fully connected graph, i.e., all 

cam-eras that are viewing the same target can communicate 

with each other directly, the Kalman-consensus filter will 

provide exactly the same result as the Kalman filter with 

centralized fusion.  
 

APPENDIX B  
PROOF OF RESULT 1 

 
Assuming there are    cameras viewing a person per-  

forming  some  actions,  the  observations  of  camera    in  
th time interval are denoted as  , . Let  
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