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 

Abstract—Vector Tracking Loop (VTL) is a recently 

proposed method to enhance GPS receiver performance. In 

VTL, a center navigation filter usually a Kalman filter (KF) is 

utilized to estimate navigation solutions and complete signal 

tracking together. Thus, all channels are processed together and 

mutual aiding can be obtained. Compared with Scalar Tracking 

Loop (STL), in which signal tracking is operated independently, 

researches have demonstrated that VTL performs better signal 

tracking performance. However, the nonlinear problems or the 

measurement outliers might affect the navigation filter and 

hinder VTL performance. This paper investigates applying 

robust adaptive cubature Kalman filter (AR-CKF) to VTL 

navigation filter. Robust M estimation is employed to resistant 

the measurement outliers and an adaptive factor is utilized to 

address the dynamic disturbance errors. A 3D dynamic 

trajectory is generated to test the AR-CKF based VTL. 

Simulations are implemented in a VTL software receiver, the 

results from comparing a common Kalman Filter with AR-CKF, 

which demonstrates that the employed AR-CKF improves VTL 

stability and accuracy. 

 

Index Terms—Cubature Kalman Filter,Vector Tracking 

Loop,M estimation,GPS,Measurement Outliers  

 

I. INTRODUCTION 

Global Navigation Satellite System (GNSS) is a satellite 

based navigation system which is widely employed in civil 

and military applications, especially Global Positioning 

System (GPS). Users with a GPS receiver available to the 

Line-Of-Sight (LOS) satellites signal are able to obtain 

position, navigation and timing (PNT) information [1-2]. At 

the moment, there are two major GPS receivers’ architectures 

termed as Scalar Tracking Loop (STL) and Vector Tracking 

Loop (VTL) [20-21].  

In a STL, the tracking loops are employed to estimate the 

pseudo-range and pseudo-range rate measurements of the 

available satellites. In which, a delay lock loop (DLL) is 

generally used to estimate the pseudo-range and a frequency 

lock loop (FLL) or a phase lock loop (PLL) is commonly used 

to estimate the pseudo-range rate. Navigation solutions are 

determined by using an iterative least square algorithm, a 

conventional Kalman filter, EKF, UKF and other modified  
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Kalman filters [3][21]. In this architecture, pseudo-ranges 

and pseudo-range rates from all the tracking channels are 

independent [4-5]. However, it can be seen that all the 

channels share the common navigation solutions, which might 

be fed back to aid signal tracking  

VTL is a recently proposed signal tracking architecture, 

which performs signal tracking of all channels together using 

a center navigation filter. The VTL is firstly initialized by 

Spilker for enhancing weak signals tracking [4]. Starting from 

this, various types of VTL implementation has been 

investigated. Lashley presents a Vector Delay/Frequency 

Lock Loop (VDLL/FLL) including thermal noise 

performance analysis using the rule of thumb tracking 

thresholds [5]. In this work, VTL and STL comparison is 

carried out and the improvements of VTL in signal tracking 

are quantified [6]. Then, T Pany describes an implementation 

of VDLL/VFLL in a GPS receiver, which is utilized to 

analyze signal power strength of GPS C/A code with two 

different C/N0 estimators. Results show that the receiver is 

able to estimate GPS C/A code signals power even the signal 

power strength is below 10dB/Hz [7]. In dynamic signal 

tracking, the results show the VTL can operate in the situation 

with signal power of 19dB-Hz through 2g, 4g, and 8g 

coordinates turns [7]. Apart from signal tracking capacity 

improving, VTL has the ability to bridge signal outages and 

work with providing moderate navigation solutions in short 

time with the amount of the available satellites fading below 4 

[4-9]. Specifically, Changhui Jiang investigates a Chip Scale 

Atomic Clock (CSAC) based VTL, and the results show that 

positioning accuracy especially altitude accuracy can be 

improved with the precise time from CSAC [20].  

Over the recent years, there are two major approaches to 

enhance VTL performance. Firstly, broad interests are 

attracted to tracking models modification. Luo proposes a 

double filter model for VTL computation efficiency [10]. Wu 

investigates a new non-coherent VTL and its application in 

integration with the Inertial Navigation System (INS) [11]. 

Besides the VTL model modification, researchers are 

dedicated to the navigation filter enhancement for addressing 

nonlinearity problem and noise suppression. In VTL, the 

navigation filter is commonly a Extended Kalman Filter 

(EKF), which is an estimator which is built by the first order 

linearization of the nonlinear model. It may suffer from the 

performance degradation or divergence problem, since 

linearization processing will cause the model miss-matching 

[12-14]. To better address the nonlinearity, unscented 

Kalman filter (UKF) is proposed. In UKF, a number of sigma 

points are used to propagate the probability of state 

distribution through the nonlinear dynamics of system not the 

first order linearization in EKF [12-15]. However, the 

rounding errors of numerical calculation for UKF may 
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destroy the non-negative and asymmetry of covariance 

matrix, therefore, the convergence rate of the UKF approach 

is slow and the system may also be unstable. Newly, Cubature 

Kalman Filter (CKF) is proposed to realize nonlinear 

estimation. Compared with UKF, a new transformation rule 

termed as third-degree spherical-radial cubature is employed 

in CKF as opposed to the UT in UKF approach. With new 

transformation rule, the performance can be improved in 

terms of accuracy, numerical stability [14-18].  

In this paper, CKF is employed to solve this nonlinear 

estimation problem. Additionally, the robust M estimation to 

adaptively adjust the cubature Kalman filter measurement 

noise matrix to address the measurement outliners and noise 

uncertainty. The adaptive robust CKF (ARCKF) is employed 

as the navigation filter to enhance the estimation performance 

and signal tracking.  

II. NONLINEAR MODEL OF VECTOR TRACKING LOOP 

Figure 1 shows the working flow of a typical VTL based 

VDLL and VFLL. Navigation filter estimated the state errors 

utilizing observation data from scaled carrier and code 

discriminators outputs. Then the estimated state errors are fed 

back to tracking loop for generating local signal replica. The 

correlator mixed the local signal replica and the incoming 

immediate frequency signal (IF) to provide navigation filter 

observation data. Thereby, the signal tracking and the 

navigation determination are accomplished together through a 

single navigation filter. Remainder of this section gives the 

mathematical model of VTL in detail.  

  

 
Figure 1. A typical VTL working flow 

 

A. State Equation 

The navigation filter states commonly includes position 

error, velocity error and time bias/drift. The deviation details 

of this model can be seen in references [20-22]: 
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The state equation can be written as equation (2):                    
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The model is constructed in ECEF coordinates. 

Thereby,  kx  ,  ky , kz  : User position error in ECEF 

frame at thk time epoch; 1 kx  , 1 ky ,
1k

z


: User 

position error in ECEF frame at the ( 1) thk  time epoch; 

, x kv  , , y kv , , z kv : User velocity error in ECEF frame at 

the thk   time epoch; , 1 x kv  , , 1 y kv , , 1 z kv : User 

velocity error in ECEF frame at the ( 1) thk time 

epoch; , b kc t  , , 1  b kc t : User clock bias at the thk  

and ( 1) thk  time epoch respectively; , d kc t  , , 1  d kc t : 

User clock drift at the thk  and ( 1) thk  time epoch 

respectively;  x ,  y ,  z : Position error noise; 

vx
 ,

vy
 ,

vz
 : Velocity error noise; b ,d :Clock bias 

error noise, clock drift error noise; c :The speed of the light in 

vacuum;T :The integration time (1 ms). 

 

B. Measurement Equation 

The measurement equation is constructed on the 

mathematical model between discriminators outputs (code 

phase errors and carrier frequency errors) and the navigation 

filter state variables. The relationship between position error 

and code phase error [9-10]:  

, , , ,     j

code k k j k b k j kc tP H          (3)             

Where, the , j

code k  is the code phase error,  kP  is the 

position error in ECEF coordinates, c is the light speed 

addressed as a constant value, ,b kt is the clock bias, the , j k  

is the range measurement noise, subscript k means the thk   

measurement epoch.  

Analogously, the impact of the carrier frequency error 

on velocity error can be written as: 

carrier k j,k d,k j,kΔ = Δ + + f c t ηV H        (4) 

Where, the  carrierf is the carrier frequency error,  kV  

is the velocity error, c is the speed of the light, ,d kt  is the 

clock drift. , j k is the measurement noise, the subscript k  is 

the thk measurement epoch.  

Then, the observation equation can be written as: 
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Where, kz  is the observation vector,  k  is the code 

phase error obtained from scaled code discriminator, kf is 

the carrier frequency error obtained from scaled carrier 

frequency discriminator.The details of  k and  

 kf calculating can be found in references [20-22]. The 

matrix kH  is composed of Line-Of-Sight vector and it can be 

written as: 
1 1 1
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, the kx  , ky  , kz is the user’s position in 

ECEF frame at the thk  time epoch. ,j kr is the distance 

between 
thj  satellite and the user. ,j kr  can be calculated 

using the equation (7). 
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III. THE ADAPTIVE ROBUST CUBATURE KALMAN FILTER 

This section gives the mathematical equations of the 

adaptive robust CKF, which heavily references the paper 

[22]. Considering a discrete nonlinear system:  
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  Where, the state vector n

kA , the measurement 

vector is m

kB . The state noise vector is n

kw , the 

measurement noise vector is m

kv ,The noise vectors 

kw   and kv   are zero mean Gaussian white sequences with 

zero cross-correlation with each other.  
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  Where, kQ  is the state noise covariance matrix, and 

kR   is the measurement noise covariance matrix.  

A. The Cubature Kalman Filter 

 The CKF implementation and updating steps are given in 

detail as equation (10) – (23): 

First step: initializing the state vector 
0|0Â   and state 

covariance matrix 0|0P ; 

Second step: CKF Time updating  

(1) Factorizing the covariance: 
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k k k kP S S                                (10) 

(2) Evaluating the cubature points through the process model: 
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(3) Estimating the propagated cubature points through the 

process model: 
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Where the 1kS calculated by the 1| 1 k kP using Cholesky 

decomposing  method.  
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(5) Estimating the predicted error covariance: 

2
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Step Three: Measurement updating 

(1) Factorizing the covariance : 
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(2) Evaluating the cubature points: 
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(3) Evaluating the propagated cubature points through 

observation  model: 
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(4) Evaluating the propagated observation: 
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(5) Evaluating the innovation covariance : 
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(6) Estimating the cross-covariance: 
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A. Adaptive Robust Cubature Kalman Filter: 

For the adaptive robust CKF (AR-CKF), the details are 

as equations (24) - (33). The main difference of the CKF and 

AR-CKF is the changes of the two equations (Eq.14 and 

Eq.23). The new equation (14) is substituted by the equation 

(31). For the equation (24), the 
yyP  is used to substitute the 

matrix yyP  in the equation (23).  

Part1: The Robust Estimation Scheme 

  The new yyP  is defined as
yyP , the details of the 

calculation is as follows: 

2
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Where kR  and kR are the covariance matrix of the 

measurement noise, they can be got from inversion of the 

equivalent weight matrix P . The P is calculated from the 

robust M estimation. 

1kR P                                   (25) 

Considering the ( ) ( , 1,2,..., )t ijp i j n  is the matrix 

elements of the matrix P .The details are as follows:  
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Where the  ii  is the element on the diagonal of the 

matrix kR ,  ij is the non-diagonal elements of the matrix 

kR . iinv  is the residual component of observation 

measurements and the 
est

iinv  is the standard residual 

component. Residual component equation is as Equ. (28). 


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Part2. The Scheme of the Adaptation  

For the filter, the residual component of observation 

measurements is as following equation (30): 

| 1
ˆ( ) i k k k iinv B B                             (30) 

The key of the adaptive tuning method is to use the 

adaptive factor  k  to correct formula (14), the corrected 

formula is equation (31). 
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Where, the determination of the adaptive factor  k  is as 

follows: 
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Where the matrix 
, | 1yy k kP  calculated from formula 

(24), 
, | 1

ˆ
yy k kP calculated from formula (33): 

, | 1
ˆ

   T

yy k k inv invP                              (33) 

IV. SIMULATION AND EXPERIMENT 

A software simulation is carried out to evaluate the 

performance of the AR-CKF in comparison with EKF 

approach for navigation filter in VTL. The AR-CKF and EKF 

is implemented in a VTL software in MATLAB. The VTL 

processes the trajectory IF signal data acquired by an IF data 

collector from a GPS hardware signal simulator. Table 1 

reviews the IF signal parameters including the sampling 

frequency and immediate frequency. Figure 2 gives the 

3-dimension plot of the dynamic trajectory in detail. 

Considering the VTL computation load and the processing 

time, the time trajectory time length is approximately 360 

seconds. Numbers in the figure 2 refer to different motion 

tasks (0: straight fly; 1: acceleration; 2: deceleration; 3: up; 4: 

down; 5: turn right; 6: tune left). 
 

Table 1. Immediate frequency signal parameters 

Sampling frequency Immediate frequency 

16.369MHz 3.996MHz 

 

 
Figure 2  A 3-Dimensional plot of the trajectory and numbers 

represent the flying tasks.   

Two different navigation filters are implemented in 

simulation including a common EKF and AR-CKF. The two 

filters are operated with same parameters setting and 

trajectory plotted in Figure 2. Navigation performance is 

compared in terms of positing accuracy. Figure 3, Figure 4 

and Figure 5 show position errors from the two different 

navigation filters in ECEF coordinates. In the pictures, the red 

line represents the EKF navigation filter position errors, blue 

line represents the AR-CKF navigation filter position errors. 
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In can be seen that both navigation filters can converge the 

position errors. AR-CKF has better position accuracy through 

position errors curves. The statistic results of position errors 

are as Table 2, in which square mean root errors and mean 

errors are selected for comparison. The AR-CKF has a great 

improvement against EKF in terms RMSE of position.  

         

 
Figure 3. Position error X 

 
Figure 4. Position error Y 

 
Figure 5. Position error Y 

 

Table 2. Position Errors Comparison 
 EKF AR-CKF 

 MEAN RMSE MEAN RMSE 

Position 

error X(m) 
2.71 4.51 1.54 1.26 

Position 

error Y(m) 
2.68 4.23 1.48 1.17 

Position 

error Z(m) 
2.95 4.87 1.72 1.41 

 

V. CONCLUSIONS 

In this paper, an adaptive robust cubature Kalman filter is 

constructed and applied in VTL to deal with the navigation 

filter nonlinearity and measurement noise uncertainty. CKF is 

employed for addressing nonlinear model of the VTL 

observation data and robust estimator is utilized to address 

measurement noise uncertainty. Then, a common EKF and the 

AR-CKF are implemented in a GPS VTL software. Position 

accuracy is carried out using a dynamic trajectory. Results 

show that AR-CKF is able to improve the position accuracy. 

VI. CONCLUSION 

A conclusion section is not required. Although a 

conclusion may review the main points of the paper, do not 

replicate the abstract as the conclusion. A conclusion might 

elaborate on the importance of the work or suggest 

applications and extensions.  
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