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 

Abstract—  It is of great importance to estimate volatility of 

asset returns for risk management in empirical finance. The 

GARCH model is often used to estimate volatility. To utilize the 

GARCH model, we need to estimate model parameters so that 

the model matches the underlying return time series. Usually the 

maximum likelihood or the Bayesian method is used for the 

parameter estimation of the GARCH model. In this study we 

apply the machine learning technique for the parameter 

estimation. We minimize the loss function defined by the 

likelihood function of the GARCH model. The minimization is 

done by the Adam optimizer of TensorFlow. We find that the 

machine learning estimates the model parameters correctly. We 

also investigate the convergence property of the Adam optimizer 

and show that the convergence rate increases as the learning 

rate increases up to a certain maximum learning rate. Over the 

maximum value, the minimization fails with the optimizer.  

 

Index Terms— GARCH model, Likelihood Function, 

Machine Learning, Bayesian Inference  

 

I. INTRODUCTION 

In empirical finance, volatility or variance of asset returns is 

important for risk management. Since volatility is latent in 

return time series, one needs to use a certain volatility 

estimation technique. A popular technique is to use models 

that mimic properties of return time series. The most 

commonly used models for volatility estimations in empirical 

finance are the Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) model [1,2,3]. The GARCH 

model can successfully capture some known properties of 

returns time series such as volatility clustering, fat-tailed 

return distribution, insignificant autocorrelation in returns and 

so forth. These properties are now classified as “Stylized 

facts” [4]. 

There exist many extended GARCH models that are 

designed to refine the model by capturing further empirical 

properties of returns. For instance, the exponential [5], GJR 

[6], Asymmetric [7,8] and Rational [9] GARCH models are 

constructed to capture the asymmetric property of volatility. It 

is well known that while stock returns show the asymmetry in 

volatility, for exchange rates and Bitcoin [10] returns the 

asymmetry in volatility is less significant.  

To utilize these GARCH-type models we need to estimate 

model parameters so that the model matches the return time 

series. Usually the maximum likelihood method or the 

Bayesian estimation performed by the Markov Chain Monte 

Carlo method [11-18] is used for the GARCH parameter 

estimations. In this study we use the alternative path, namely 

the machine learning for the parameter estimations. In the 

machine learning process, we minimize a loss function  
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defined by the likelihood function of the GARCH model. 

Then we show that the parameter estimation by the machine 

learning can also lead to the correct values of parameters. 

II. GARCH MODEL 

 

The GARCH model [1,2,3] we use in this study is defined as 

follows. Let tr  {t=1,…,N}  be a return at time t. tr  is given 

by  

                                  tttr  ,                                  (1) 

where 
2

t  is the volatility and t the Gaussian random 

variable with zero average and unit variance. In the GARCH 

volatility process, 2

t is defined by 
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 where  ,  and   are the model parameters to be 

estimated. 

  To estimate the model parameters, we use a likelihood 

function (LF) of the GARCH model, defined by 
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The maximum likelihood estimation determines the model 

parameters by maximizing the LF. In the Bayesian estimation, 

the probability distribution of the parameters are constructed 

by using the LF under the Bayes theorem and then the 

parameters are obtained as expectation values over the 

probability distribution.  

III. ESTIMATION BY MACHINE LEARNING 

In machine learning we determine the model parameter by 

minimizing a loss function defined by 

Loss function = -log (LF)  
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Minimizing the loss function leads to the same results with 

maximizing the likelihood function. To perform the machine 

learning, we use TensorFlow [19]. TensorFlow prepares 

several optimizers for minimization purpose. In this study we 

use the adaptive moment estimation (Adam) [20] which is 

known to show a better convergence property than other 

optimizers such as the gradient decent method. The Adam has 

several tunable parameters. We use default settings 

recommended in [20] except for the learning rate (LR).  

Varying LR, we perform the GARCH parameter estimation 

with the Adam optimizer and investigate its performance, 

convergence rate and so on. 
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IV. SIMULATION STUDY 

First we generate artificial GARCH time series by eq.(2) 

with known parameters. Then we perform the parameter 

estimation by machine learning to the GARCH time series.  

The results will be compared with the known parameters. The 

computational environment of this study is summarized on 

Table 1. 

 

Table 1: Computational environment. 

CPU  Intel Core i7-8700  3.20GHz 

Memory 16GB 

OS Windows 10 

TensorFlow Version 1.9.0 

Python Version 3.6.6 

 

Fig.1 shows the GARCH time series generated with a set of 

input parameters, )1.0,8.0,1.0(,,  . The number of the 

data generated is 2000. We iterate the minimization process 

by the Adam optimizer 10000 times for various values of LR.  

 
Fig.1 GARCH time series generated at 

)1.0,8.0,1.0(,,  . 

 

 Figs.2-4 show  ,  and   as a function of iteration, 

respectively. The initial values of parameters are set to  

)05.0,6.0,3.0(,,   and then the Adam optimizer is 

performed.  For all the values of LR in [0.0001,0.005], the 

estimated values of   ,  and  seem to converge to the 

correct values. The precise values obtained are listed on Table 

2.  The values of  ,,  estimated by the Bayesian method 

[12-17] applied to the same GARCH time series are also 

listed on Table 2. It is recognized that the values estimated by 

machine learning are consistent with those obtained by the 

Bayesian method.  

It is found that the convergence speed to the correct values 

increases with increasing LR. However we also find that for 

values over LR=0.00547, the loss function by the Adam 

optimizer diverges. Thus there exists a maximum LR that 

preserves the convergence.    

Figs.5-7 show trajectories of parameters from initial values 

to the converged values in   ,   and    planes, 

respectively. We find that as the LR increases the trajectory 

starts to take a detour. It is understood that by taking a detour 

the Adam optimizer accelerates the convergence speed.  

 

Table 2: Input parameters and estimated parameters by 

machine learning and Bayesian method. 

       

Input parameters 0.1 0.80 0.1 

Machine Learning  0.0967 0.802 0.0991 

Bayesian method 0.103 0.779 0.115 

 

 
Fig.2 Parameter as a function of iteration for various LR. 

 

Fig.3 Parameter  as a function of iteration for various LR. 

 

Fig.4 Parameter as a function of iteration for various LR. 
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Fig.5 Parameter trajectory in    plane. 

 

 

Fig. 6 Parameter trajectory in    plane. 

 

 
Fig.7 Parameter trajectory in    plane. 

 

 In order to investigate the convergence rate, we calculate 

the error defined by error =Loss(iteration)- min(Loss). Fig.8 

shows the error versus iteration for various LR. At sufficiently 

large iterations, the error seems to decrease exponentially. To 

measure the convergence rate, we fit the error by a function of 

)exp( xa  in a range of error=[0.0005,0.1], where 

x stands for the iteration. a and   are the fitting parameters. 

We define  as a convergence rate. Fig.9 shows the 

convergence rate  as a function of LR. The convergence 

rate increases as LR increases, almost linearly up to around 

LR=0.005. For LR over 0.00547, the loss function by the 

Adam optimizer does not converge.  

 

 
Fig.8 Error versus iteration for various LR. 

 

 
Fig.9 The convergence rate  as a function of LR. 

V. CONCLUSION 

The GARCH parameter estimation is performed by 

machine learning.  We apply the machine learning for the 

parameter estimation of the artificial GARCH time series 

generated with known parameters. By minimizing the loss 

function with the Adam optimizer of TenesorFlow, we find 

that the model parameters of the GARCH model are 

determined correctly.  The convergence property of the Adam 

optimizer is also investigated. We find that the convergence 

rate increases as the learning rate (LR) increases up to around 

LR=0.005. Over LR=0.00547, the Adam optimizer fails to 

minimize the loss function of the GARCH model.  

This study focuses on a univariate GARCH model that has 

three model parameters. It would be interesting to further 

investigate multivariate GARCH models [21] with many 

model parameters that demand much computational effort and 

to elucidate whether machine learning can estimate 

parameters of the multivariate GARCH models. 
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