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 

Abstract— This paper presents performance analysis of 

image denoising techniques using different orthogonal and 

compactly supported wavelets functions of various vanishing 

moments. The wavelet-based methods such as universal 

thresholding, level-adaptive and subband-adaptive thresholding 

are compared with the state-of-the-art Wiener filtering. The 

wavelet coefficients are modeled by the generalized Gaussian 

distribution random variables within the subbands. A minimal 

threshold is calculated from the noise standard deviation of the 

diagonal subband of the first decomposition level. Then the soft 

thresholding scheme is applied. The procedure of noise 

reduction is applied with Daubechies, Symlets and Coiflets 

wavelet functions of different vanishing moment upto forth 

decomposition levels. Then the efficiency and performance of 

these image denoising techniques are compared based on their 

Peak Signal to Noise Ratios and visual perception. The wavelet 

domain thresholding is evaluated and examines some 

improvements for different image complexities contaminated by 

Gaussian noise of various densities. 

 

Index Terms— Subband-adaptive Thresholding, 

Level-adaptive Thresholding, Wiener Filtering, Image 

Denoising and PSNR 

I. INTRODUCTION 

  A natural image encounters the additive white Gaussian 

noise (AWGN) during image acquisition and its transmission 

due to faulty equipments [1]. Image denoising is the noise 

reduction procedure which is used to recover the image 

contaminated from AWGN while retaining the image 

sharpness and smoothness as much as possible. The objective 

of an image denoising technique is to reduce the noise while 

preserving the original image features and other fine details 

[1-6]. An efficient image denoising technique is still a 

challenge to the researchers due to the different complexities 

of the images [7-9].    

An image filter can be used to reduce the different type of 

noises from an image to visualize it noise free and real. An 

image denoising techniques through filtering are categorized 

into linear filtering and non-linear filtering [2] in frequency 

domain and in transform domain. These both type of filtering 

can be achieved in frequency domain and transform domain 

[1]. Frequency domain techniques generate the undesired 

structures in the image such as blurs, artefacts and Gibb’s  
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phenomenon [3, 6]. So they are replaced by transform domain 

techniques which denoise the image with preserving its 

features and avoid the generation of undesired elements 

which degrade the image quality. 

In the literature, image processing has developed powerful 

wavelet based methods for the multiscale representation and 

analysis of images [6-12]. Discrete wavelet transform (DWT) 

is capable of localize the information in the time-frequency 

plane and differ from the frequency based discrete transform 

techniques [6]. The independent identically distributed (i.i.d.) 

random variables with generalized Gaussian distribution 

(GGD) models the wavelet coefficients within the subbands 

[18]. In wavelet based denoising, DWT on the noisy image is 

applied to find the wavelet coefficient subbands [10]. Let W 

denotes the 2-D DWT and W
-1

 denotes its inverse respectively 

and is given as:   

XWxandWxX 1             (1) 

  

In wavelet based denoising, DWT on the noisy image is 

applied to find the wavelet coefficient subbands. DWT based 

linear denoising techniques may be achieved by applying 

Wiener filtering scheme [7, 12]. The objective and subjective 

results of the linear filters are not satisfactory. These filters 

blur the sharp edges of an image and destroy other finer 

details. The non-linear filtering is used to avoid these 

problems which are popular in the images denoising in 

wavelet domain [22]. In these techniques, the noise standard 

deviation is calculated from the diagonal detail subband 

coefficients 
1

HH of first decomposition level as given below: 

 

 
6745.0

1

ˆ
HHmedian

noise
                (2) 

 

 Then the noise variance is estimated for each subband and 

level using this calculated standard deviation of the noise and 

optimal threshold value is calculated. This computed 

threshold is used through soft thresholding to the noisy 

wavelet coefficients of detail subbands for desired 

decomposition levels to reduce the noise while preserve the 

image features. The experimental results confirm that 

denoised images are preserving more detail information and 

with less blurring [20]. 

The work in this paper is organized as follows. In Section I, 

basic about image denoising and the application of DWT in 

the image denoising are explained. Section II provides brief 

review of the wavelet-based image denoising technique with 

block diagram. Section III provides brief review of the 
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Wiener filtering and the wavelet coefficients thresholding 

schemes used and their structures. Section IV explains the 

performance parameters like mean square error (MSE) and 

Peak Signal to Noise Ratios (PSNR). The experimental 

results analysis of the image with three samples of noise 

variance (low, medium and high) for each technique is 

reviewed in Section V and   it also provides the comparison of 

PSNR values of denoised image using different wavelet types 

and versions for each method in the Table I. In Section VI, all 

the conclusions from the work are given and Section VII is 

closed with future scope.  

II. DWT IN IMAGE DENOISING 

The image denoising reduces the noise while preserving the 

fine details of an image. DWTs are popular from the work of 

Donoho and Johnstone [2]. They proposed a simple nonlinear 

estimator by thresholding the wavelet coefficients that were 

nearly minimax in a large family of functional spaces. This 

approach is the basically used for developing the various 

methodologies in wavelet domain.  

The following three steps are required for DWT based 

image denoising scheme: 

 Computation of the DWT of the noisy image after 

finalizing the followings: 

 Choice of a wavelet types (e.g. Daubechies, symlets, 

coiflets etc) and  

 Number of decomposition levels.  

 Wavelet coefficient thresholding by: 

 Estimation of standard deviation of noise from the 

first level diagonal subband. 

 Shrinkage rule i.e. threshold calculation using the 

estimated variance. 

 Shrinkage function i.e. apply the calculated 

threshold to the detail coefficients. This can be 

accomplished by hard or soft thresholding.  

Apply the inverse DWT for the thresholded coefficients. 

 

 
Fig. 1. Block diagram of Wavelet-based Image Denoising 

Method 

 

A. Step I:  DWT of Noisy Image 

The localization property of wavelets in space and scale 

makes them suitable for adaptive methods [4, 6]. The DWT 

decomposes the noisy images into sub-image of different 

spatial domain and independent frequency domain. DWT 

separate image signal and noise signal in the wavelet domain 

effectively using the scarcity property.  

DWT maps AWGN of the image into the white noise in the 

transform domain [6, 10]. Before computation of the DWT of 

the noisy image, one must finalize the type of the selected 

wavelet and level of decomposition. There is no universal 

wavelet basis which suites all types of the image complex 

structures [5]. The wavelet function may not necessarily be 

best adapted to an underlying image complexity. When an 

image includes more complex structures with fine details, it 

becomes necessary to adaptively select an appropriate best 

basis which provides the best image estimate upon 

thresholding the noisy coefficients [5]. The efficiency of a 

basis to handle the complex structures of the image is 

according to the symmetry and regularity of the wavelet [16]. 

These properties are well fulfilled by orthogonal and 

compactly supported wavelets like Daubechies, Symlets and  

Coiflets families. A search of best basis in the wavelet 

families is analysed in this paper. 

In DWT, a noisy image can be decomposed into a sequence 

of four frequency subbands namely, LL1, LH1, HL1 and HH1 

as shown in Figure 2 (a). The decomposed image shows a 

coarse approximation image in the lowest resolution low pass 

band (LL1), and three detail images in higher bands (LH1, HL1 

and HH1) [15. 17]. The next level of wavelet transform is 

applied to the low frequency subband image LL1 only and it 

can be further decomposed into four subbands namely LL2,  

LH2, HL2, and HH2 as shown in Figure 2 (b). The process 

of decomposition continues until the desired number of levels 

determined by the application is reached [2].  

 

 
(a) One-Level 

 

 
(b) Two-Level 

Fig. 2: 2D-DWT decomposition  

 

This process is continued upto fourth decomposition level 

[17]. After this decomposition level, the wavelet coefficients 

become smoother. As the subband HL2 is smoother than HL1, 

so the threshold value of HL2 should be smaller than that of 

HL1. The magnitude of the wavelet coefficient varies 

depending on the decomposition level. Only severer noise 

remains after forth decomposition level. 
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B. Step II: DWT Coefficients Thresholding 

After the wavelet decomposition is performed on the noisy 

image, it is needed to do thresholding. The wavelet 

coefficients thresholding has two parameters: shrinkage rule 

and shrinkage function. The shrinkage rule is how to calculate 

the threshold and shrinkage function is how to apply the 

calculated threshold. Researchers published different 

schemes for the threshold estimation and its application. 

 

i). Shrinkage Rule i.e. Threshold Selection 

The selection of a suitable threshold value is the challenging 

issue of a wavelet-based image denoising methodology [13]. 

The noisy coefficients are retained by selecting small 

threshold value and the fine details of images are smoothened 

by large threshold. The threshold value may be adaptive and 

non-adaptive approach across the wavelet scales and 

locations. The non-adaptive approach reveals a universal 

threshold proposed by Donoho and Johnstone [2] and an 

adaptive approach can give a level or subband adaptive 

threshold. This threshold value is estimated by using the noise 

standard deviation, as given in equation (2) above.  

The spatial configuration of wavelet coefficients can 

classify the noise-signal differentiation for higher noise [15, 

21].  The threshold must be estimated adaptively based on 

scale and space of wavelet coefficients to preserve the 

important features of the image. An adaptive threshold is 

computed by fixing the optimum noise standard deviation 

depending on the decomposition level and subbands. This 

threshold estimation scheme is called Bayesian estimator [14, 

25] and used in this paper. 

The unique threshold for all the wavelet coefficients is 

called universal threshold proposed by Donoho and 

Johnstone [2]. This threshold estimation criterion is called 

VisuShrink. The same threshold is applied to all levels of 

decomposition [6, 18]. The universal threshold is not capable 

to differentiate the smooth (flat) and non-smooth 

(feature-based) region of the image and is applicable only 

when noise level is low.  

Under the high noise circumstance, the spatial 

configuration of wavelet coefficients can play an important 

role in noise-signal classifications [15, 19]. The threshold 

must be estimated adaptively based on scale and space of 

wavelet coefficients which is different for different level or 

subband.  In this way, important features of the image may be 

preserved. An adaptive thresholding is also ussed by fixing 

the optimum thresholding value depending on the 

decomposition level. This threshold estimation scheme is 

called Bayesian estimator. 

 

ii). Shrinkage Function i.e.  Threshold Application 

In the wavelet transform domain, the noise is uniformly 

spread throughout the coefficients, while most of the image 

information is concentrated in few significant coefficients 

[15]. Therefore, one straightforward way of distinguishing 

information from noise in the wavelet domain is to threshold 

the wavelet coefficients. The application of threshold to the 

wavelet transformed coefficients is known as thresholding [1, 

16]. Two types of thresholding scheme used literature are: 

hard thresholding (3) and, soft thresholding (4).   

The hard thresholding is a keep or kill procedure. It 

removes the small wavelet coefficients while others are left 

untouched. But this method causes artifacts in the images as a 

result of unsuccessful attempts of removing moderately large 

noise coefficients. To overcome the demerits of hard 

thresholding, soft thresholding based on DWT is used. In this 

scheme, the wavelet coefficients smaller than the threshold 

are removed while larger coefficients are shrunk by the 

absolute value of the threshold itself. 
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The application of hard thresholding over smoothen the 

images at discontinuity, due to which artifacts are 

reconstructed in denoised image. The soft thresholding 

scheme is used in this paper. 

 

C.  Step III: Inverse DWT of Thresholded Coefficients  

After trimming down the small wavelet coefficients, i.e. after 

removing the noisy wavelet coefficients from all the detailed 

subband coefficients, image reconstruction is performed 

using the same wavelet function type and version as used at 

the time of decomposition of the image. The image 

reconstruction is the exact reverse process of wavelet 

decomposition [24] by finding the inverse DWT (IDWT). 

The additive low pass and high pass synthesis filters are used 

to sample the approximation and detail coefficients through 

the same number of decomposition levels as used in DWT. 

III. ADAPTIVE IMAGE DENOISING METHODS 

 

This section covers the details regarding the Wiener filtering, 

universal thresholding, subband-adaptive and level-adaptive 

techniques of image denoising along with their theory. All 

these techniques have different methods of computing the 

threshold value and are explained as follows. 

 

A. Weiner Filtering 

The Wiener filter reduced the AWGN [8] from a noisy image 

based on local statistics of each pixel. It performs little 

smoothing for large noise variance. When the noise variance 

is small, this filter performs more smoothing and reduces the 

sharpness of the image. 

This filter produces better results for image denoising in the 

literature. Wiener filter is characterized by the following 

criteria:  

Assumption: the given images and AWGN have known 

spectral characteristics which are stationary linear 

random processes.   

Requirement: the filter must be causal i.e. physically 

realizable. 

Performance criteria:  The main performance parameter 

is the minimum mean-square error (MMSE). 

 

Steps in Weiner Filtering: 

i.   A local window n x n of the noisy pixel is used to 

remove AWGN from the image. 

ii. These equations are used to estimates local mean and 

local standard deviation. 
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iii. Finally apply Wiener filter for each pixel inside local 

window nn to obtain denoised pixel. 

iv. After this, new denoised pixel D(i, j) is found by 

shifting local window one step from left to right: 

    



 


 jifjiD noise ,,

2

22

            (7)  

note: i, j = 3, 5, 7 

B. Universal Thresholding Technique 

In wavelet domain, the highest frequency subband 

HH1 can contain a significant amount of noise, so this 

diagonal subband is used to estimate the threshold value by 

using noise standard deviation ̂ noise
  as given equation (2) 

above. The universal threshold is calculated as follows: 

 

L
noise

log2̂
                    (8) 

 

where NML  is the image size. The processed image 

may be overly smoothened due to the larger threshold value 

so that sufficient image features are not preserved and the 

image gets blurred. So an adaptive thresholding is required 

for image features preservation. 

 

C. Level-adaptive Thresholding Technique 

Bayesian estimator uses a Bayesian mathematical framework 

in which wavelet coefficients in each detail subbands follow 

the GGD to minimize the Bayesian risk [10]. The 

level-dependent threshold is calculated using Bayesian 

estimator. The Bayesian threshold, TB, is defined as:   

   

 0,max ˆˆ

ˆ
ˆ
ˆ

22

22







noiseG

noise
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noise
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


                (9) 

 

where ̂
2

noise
is the noise variance and 

̂
2
signal

is the signal 

variance without noise.  
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 where Gxy are the HH1 wavelet coefficients. 

 

The noise variance ̂
2

noise

is estimated from the subband HH1 

by the median estimator as,   

       
6745.0

1

ˆ
HHmedian

noise
                     (10) 

The variance of the signal, 
̂

2
signal

 is computed as follows:   

         

 (11) 

    

with ̂
2
w

 and 
̂

2
signal

 the Bayes threshold is computed. 

The wavelet coefficients are thresholded using this threshold 

at each subband of a decomposition level. This is repeated for 

each decomposition level further. 

 

D. Subband-adaptive Thresholding Technique 

As the decomposition levels increased, the wavelet 

coefficients of the subband usually become smoother [17]. 

The higher subband HH3 is smoother than the corresponding 

lower subband in the previous level (HH2), so the threshold 

value of HH3 should be lower to remove fewer coefficients 

than the one for HH2. 

A subband-adaptive threshold is calculated to characterize 

local features of the image. A separate threshold is calculated 

for each subband using equation (2) from different levels 

based on Bayesian estimator. A subband-dependent 

thresholding scheme is used to threshold the small wavelet 

coefficients (noisy) within that subband while preserving 

edges adaptively. The implementation steps are given as: 

 

1. The images are loaded into the workspace by using 

MATLAB function. 

2. This image is made corrupted with Gaussian noise using 

the MATLAB function.  

3. The image obtained is subjected to a DWT using 

Daubechies, Symlets and Coiflets wavelet families. This 

function generates wavelet coefficients for the corrupted 

image.  

4. There are four subbands namely, LL1, LH1, HL1 and HH1, 

where LL1, corresponds to the approximation coefficients, 

while LH1, HL1 and HH1 are the detail coefficients over 

which thresholding is done.  

5. The standard deviation of the noise is calculated from the 

diagonal subband (HH1) of the first decomposition level 

6. The noise variance for each subband is computed to 

calculate the threshold value using Bayes estimator.  

7. Soft thresholding of the wavelet coefficients is brought 

using the MATLAB function. 

8.  Inverse DWT using MATLAB function is done on the 

modified wavelet coefficients to get the denoised image. 

IV. PERFORMANCE PARAMETERS 

 

The above wavelet-based denoising algorithms namely 

universal thresholding, level-adaptive thresholding and 

subband-adaptive thresholding are applied on the image of 

size 256x256 at different Gaussian noise levels: (Standard 

Deviation) 10, 15, 20, 25, 30, 35, 40. Different orthogonal 

and compactly supported wavelets family functions are used 

namely db5, db8 of Daubechies, sym5, sym8 of Symlets and 

coif5 of Coiflets as the wavelet type and up to four 

decomposition levels are analysed for the noisy image. 

 The performance of these image denoising methods is 

evaluated by comparing their PSNR value for different noise 

densities [7, 17, 18] for each image. PSNR is given as the ratio 

of maximum power of original image and the power of the 

image's noise. It is commonly used by the researchers to 

measure the quality of reconstructed images objectively that 

have been denoised. The lower quality denoised images have 

lower PSNR values and a higher quality denoised images 

have higher PSNR values. PSNR values are expressed in 

   ˆˆˆ
222

max
signalwsignal
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^ 

decibels (dB) as the images can have a wide dynamic range 

[8]. It is calculated using the MSE for two 

NM  images  jiI ,  and ̂  jiI ,ˆ , where one of the images 

is considered a noisy approximation of the other. The PSNR is 

defined by:  

MSE

MAX
PSNR

2

10log10 dB            (12) 

 

where, 𝑀𝐴𝑋 is equal to 255 when the pixels are 

represented using 8 bits per sample and MSE is given by: 

2

1 1

)],(ˆ),([
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jiIjiI
MxN
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i

J

j

 
 

      (13) 

 

V.  EXPERIMENTAL ANALYSIS OF DENOISED IMAGES 

 

Here four images of different complexities and format are 

considered namely lena.bmp, parrot.png, cameraman.jpg  

 

and peppers.png.  The results are shown for low, medium and 

high noise densities for lena.bmp and peppers.png images 

with their PSNR values with considered orthogonal and 

compactly supported wavelets of different vanishing 

moments. 

A. Objective Evaluation 

All the techniques implemented are compared by finding the 

MSE and then PSNR in dB using wavelet types ‘db5’, ‘db8’, 

‘sym5’, and ‘coif5’ as they are more suitable in image 

denoising. Following table I illustrates the comparison with 

Wiener filtering all considered wavelet domain thresholding, 

namely universal thresholding, subband-adaptive 

thresholding and level- adaptive thresholding on the basis of 

PSNR values for the images of different structure. Further, 

output PSNR have been compared and analyzed for these 

thresholding schemes at different noise standard deviation 10, 

15, 20, 25, 35 and 40 respectively (low, medium and high), as 

shown ahead in Table 1. The used image denoising methods 

are better than those having lower PSNR values. 

 

 

 

Table I: PSNR values for all techniques for lena image 

Noise 

Standard 

Deviation, 

 

Wiener 

Filter 

Wavelet 

Type 

Universal 

Thresholding 

Level-adaptive 

Thresholding 

Subband-adaptive 

Thresholding 

10 30.6467 

db5 31.6819 31.8672 33.4576 

db8 31.3055 31.7309 33.4603 

sym5 31.6078 29.1504 32.6858 

coif5 31.8612 30.6297 33.2818 

15 29.5048 

db5 29.3286 28.9038 30.9537 

db8 29.1524 29.6566 30.8734 

sym5 29.3153 28.3576 30.9003 

coif5 29.396 28.586 31.1713 

20 28.3404 

db5 27.933 27.7291 29.1669 

db8 27.7541 27.8073 29.251 

sym5 27.6329 26.5586 29.0956 

coif5 27.8345 27.7136 29.1346 

25 27.3029 

db5 26.733 25.3275 28.0613 

db8 26.6542 26.7604 28.2245 

sym5 26.4596 24.746 27.6593 

coif5 26.8965 25.6071 27.8043 

30 26.4747 

db5 25.9271 24.9305 27.1334 

db8 25.8977 24.4917 27.3878 

sym5 25.401 24.7347 26.33 

coif5 25.0171 25.9379 26.9262 

35 25.5617 

db5 24.165 24.1566 26.4753 

db8 24.1041 24.1847 26.5185 

sym5 24.6731 24.0348 25.4485 

coif5 25.6992 25.2512 26.2055 

40 24.8093 

db5 24.5921 23.9787 26.5347 

db8 24.6107 24.361 25.9402 

sym5 24.0658 23.7513 24.7864 

coif5 24.6748 24.7048 25.5246 

n



 

Performance Analysis of Adaptive Image Denoising Techniques for Different Levels of Wavelet Decomposition using 

Orthogonal and Compactly Supported Wavelet Families 

                                                                                           56                                                                          www.ijeas.org 

B.  Subjective Evaluation 

The results of the universal and adaptive thresholding are 

shown for low, medium and high noise densities for all the 

images with their PSNR values. The denoised images show 

the comparison among the different noise standard deviation 

of subband-adaptive thresholding on the basis of PSNR 

values and visual perception. The subband- adaptive 

thresholding technique restores the most of the image details 

at the high noise standard deviation and avoids the artifacts 

in the image of different intensities. 

i). Subjective results for lena image using db8: 

a). Level-adaptive Thresholding:  

i) Noise Standard Deviation=15, Value of PSNR=31.7309 

     
        Original image  Noisy image   Denoised image 

 

ii) Noise Standard Deviation=25, Value of PSNR=26.7604 

     
        Original image  Noisy image   Denoised image 

 

iii). Noise Standard Deviation=35, Value of PSNR=24.1847 

     
        Original image  Noisy image   Denoised image 

b). Suuband-adaptive Thresholding:  

i) Noise Standard Deviation=15, Value of PSNR=33.4603 

     
        Original image  Noisy image   Denoised image 

 

ii). Noise Standard Deviation=25, Value of PSNR=28.2245 

     
        Original image  Noisy image   Denoised image 

iii). Noise Standard Deviation=35, Value of PSNR=25.4485 

     
Original image  Noisy image   Denoised image 

 

ii). Subjective results for peppers image using Coiflet5: 

a). Level-adaptive Thresholding:  

i) Noise Standard Deviation=15, Value of PSNR=27.9031 

     
Original image  Noisy image   Denoised image 

 

ii) Noise Standard Deviation=25, Value of PSNR=24.2028 

     
Original image  Noisy image   Denoised image 

 

iii) Noise Standard Deviation=35, Value of PSNR=23.1004 

     
Original image  Noisy image   Denoised image 

b). Suuband-adaptive Thresholding:  

i) Noise Standard Deviation=15, Value of PSNR=29.2124 

     
        Original image  Noisy image   Denoised image 

 

ii). Noise Standard Deviation=25, Value of PSNR=26.5942 

     
Original image  Noisy image   Denoised image 
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iii). Noise Standard Deviation=35, Value of PSNR=24.6748 

     
Original image  Noisy image   Denoised image 

 

V. CONCLUSIONS  

 

In this paper, various wavelet-based methods are evaluated 

for recovering an image from noise contamination effectively. 

They are based on the DWT of the image and the GGD 

modeling of the subband coefficients. The results of the 

adaptive image denoising algorithms namely level-adaptive 

thresholding and subband-adaptive thresholding are 

demonstrated with Wiener filtering and universal 

thrresholding. The noise standard deviation of low, medium 

and high are considered for different densities for the image. 

The noise variance is estimated by Bayesian estimator 

method. To analyze the noise reduction and edge preserving 

capability of the all the methods, different performance 

indices like MSE and PSNR have been used. The visual 

perception of the denoised images is also considered. 

In this work, it was demonstrated that adaptive thresholds 

greatly improves the denoising performance over universal 

thresholds. The Wiener filtering is used here for comparison 

which is the best linear filtering possible. The image quality of 

subband-adaptive is superior to all of others denoising 

methods.  

After implementing all these denoising techniques, a 

comparative analysis is performed on all the techniques with 

different orthogonal and compactly supported wavelet type 

and came to the following conclusions  

i). The resulting image is very smooth and has a non-pleasant 

visual appearance in universal thresholding scheme. It is 

the worst technique in preserving the image features and 

sharpness. This can also be verified by looking at the 

denoised images or the PSNR comparative Tables I above. 

The PSNR values for this method are quite high for low 

noise densities and come down significantly for images 

with more noise. The denoised images are blurred and 

have artifacts.  

ii). Level-adaptive thresholding method provides reasonable 

and consistent image denoising even though the PSNR 

values are not that high. The denoised images look quite 

sharp and low loss of important information takes place 

compared with universal thresholding. But it performs 

over smoothing higher decomposition levels. 

iii). Subband-adaptive thresholding method provides better 

denoised images than the level-adaptive thresholding, 

though the difference is more pronounced at lower noise 

levels. Similarly, the denoised images are sharp and no 

loss of information takes place. Also, the over smoothing 

of the image is avoided by this method. It is more suitable 

for all types of images. 

iv). As inferred from the PSNR Table I, Subband-adaptive 

thresholding gives us the better results and these are 

confirmed by looking at the output denoised images. 

Level-adaptive thresholding though is better than the 

Wiener algorithm and universal thresholding. The only 

possible setback faced in Subband-adaptive thresholding 

can be the time required to obtain the threshold from each 

subband which is not as high. 

 

The Gaussian noise is reduced at the cost of smoothing of 

the image textures and other fine details as shown in denoised 

images subjectively. The PSNR values given in Table I for all 

the methods have been extensively analyzed. The 

experimental results demonstrate the significance of the 

image denoising for visual perception of the images. 

The results show that Daubechies wavelet with eight 

vanishing moments (db8) provides marginally better 

performance than other wavelet versions for each type of 

natural images and each noise densities in all the methods. 

However the choice of a minimal adaptive threshold requires 

further attention by the researchers. 

 

VI. FUTURE SCOPE 

The best adaptive method is suggested among all the 

considered methods based on the objective and subjective 

experimental results analysis. Therefore, future work can be 

done based on local adaptivity which can improve the 

experimental results objectively and subjectively. Also the 

spatially adaptive non-linear filters can be included in the 

study. Although the setting in this paper was in the decimated 

wavelet domain, the same idea can be extended to 

undecimated wavelet domain. This would likely improve the 

denoising performance.  
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