

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-5, Issue-6, June 2018

 44 www.ijeas.org



Abstract— This Nowadays, research in computational agents

capable of rational behaviour has grown widely. The

formalizations of agents and their implementations have

proceeded in parallel in different areas. In the games theory the

behaviour of agents is relevant and necessary. We presented a

novel approach about a computational agent that plays

efficiently the well-known game connects four. This agent

includes a reasoning module for decision-making based on

A-Prolog (Answer Set Programming). Our aims in this article

are firstly to briefly summarize the key concepts of decision

theory and game theory. Next, we present a novel

implementation about an agent in the game connect four that

shows a perfect union between two different paradigms that

have shown efficiency (A-Prolog & Java). This article shows the

effective use of A-Prolog as a modeling language. We show that

our A-Prolog-based approach can naturally satisfy the above

requirements, through an A-Prolog encoding of the connects

four game.

Index Terms— A-Prolog, Computational agent, Game

Theory, Reasoning.

I. INTRODUCTION

 In recent years, the agents paradigm has virtually invaded

every subfield of computer science. Influencing a broad

spectrum of disciplines such as reasoning, planning, among

others. Agent technology is a methodology to realize an

autonomous decentralized system with interactions among

agents that model each element of the system. Although

commonly implemented by means of imperative languages,

mainly for reasons of efficiency. However, that efficiency has

been reached at the moment by development of computational

logic based on A-Prolog. In addition, the computational logic

has shown to have a clear specification and correctness. Logic

programming and non-monotonic reasoning have shown a

growing interest in development of intelligent agents.

Logic programming, by virtue of its nature both in

substance and method, provides a well defined, general, and

rigorous framework for systematically studying computation,

or attending implementations, environments, tools, and

standards [1], [2]. The computational logic provides

solutions, at a sufficient level of abstraction so that they

generalist from problem domain to problem domain, afforded

by the nature of its very foundation in logic. Particularly, we

can to say that the computational logic has its major asset in

both substance and method.

In this paper, we address our approach to the

implementation of agents with this piece of reasoning used to

 Fernando Zacarias Flores, Computer Science, Universidad Autónoma

de Puebla, Puebla, México, +52 2222295500

Rosalba Cuapa Canto, Faculty of Architecture, Universidad Autónoma

de Puebla, Puebla, México, +52222295500

Meliza Contreras González, Computer Science, Universidad

Autónoma de Puebla, México.

Oscar García Pérez, Coputer Science, Universidad Autónoma de

Puebla, Puebla, México.

play. We use extended logic programs under the answer set

semantics, some very good recent reviews with many

references are [3] and [4].

With respect to decision theory, decision theory allows us

to analyze which of a series of options should be taken when

we do not have a function to evaluate exactly what will be the

result of taking the option. Decision theory allows us to

identify the "best" decision option, although the meaning of

the word “best” has diverse connotations, of which the most

common is that which maximizes the expected utility of the

decision maker.

On the other hand, game theory is a close relative of

decision theory. In particular, it studies the problems of how

interaction strategies can be designed that will maximize the

welfare of an agent and how protocols or mechanisms can be

designed that have certain desirable properties. The interest

for these two theories has grown so much and particularly in

the construction of agents that nowadays, there are many

conferences, workshops, books, etc., in this direction.

II. KNOWLEDGE INTERPRETATION BY THE AGENT

Next, we consider the next interpretation under ASP [5].

Given a theory T, its knowledge is understood as the formulas

F such that F is derived in T using intuitionistic logic. This

makes sense, since in intuitionistic logic according to

Brouwer, F is identified with “I knows F'” (or perhaps some

reader would prefer to understand the notion of “knowledge”

as “justified belief”).

An agent whose knowledge base is the theory T believes F if

and only if F belongs to every intuitionistically complete and

consistent extension of T by adding only negated literals (here

“belief” could be better interpreted as “coherent” belief).

Take for instance: a  b. The agent knows a  b, b

 a and so on and so forth. The agent does not know

however a. Nevertheless, one believes more than one knows,

but a cautious agent must have its beliefs consistent to its

knowledge. This agent will then assume negated literals able

to infer more information. Thus, in our example, our agent

will believe a and so he/she can conclude b. It also makes

sense that a cautious agent will believe a or a rather than

to believe a (recall that a is not equivalent to a in

intuitionistic logic). This view seems to agree with a point of

view by Kowalski, namely that “Logic and LP need to be put

into place: Logic within the thinking component of the

observation-thought-action cycle of a single agent, and LP

within the belief component of thought”'. As Pearce noticed,

if we include strong negation we just have to move to Nelson

logics [6]. However, if we want to stay in intuitionistic logic

we can make a simple renaming as in [7].

III. A-PROLOG AS MODELING LANGUAGE

A-Prolog is an answer set solvers based on answer set

programming paradigm [8]. It supports a powerful language

Modelling Agents with A-Prolog

Fernando Zacarias Flores, Rosalba Cuapa Canto, Meliza Contreras, Oscar Garcia Pérez

Modelling Agents with A-Prolog

 45 www.ijeas.org

extending Disjunctive Datalog with many interesting features

such as strong and weak constraints, functions, etc. We

illustrate its input language and give indications on how to use

it for representing knowledge in applications where advanced

knowledge modeling capabilities are necessary.

ASP is a kind of logic programming, which represents

solutions to a problem by answer sets, and not by answer

substitutions produced in response to a query, as in

conventional logic programming, in many of the occasions

represented by Prolog. The answer sets for a logic program

can be described as the satisfying interpretations for a set of

propositional formulae.

A. Propositional Logic

We use the language of propositional logic in order to

describe rules within logic programs. Formally we consider a

language built from an alphabet consisting of atoms: p0, p1,

…;

connectives: , , , ⊥; and auxiliary symbols: “(“, “)”, “.”,

where , ,  are 2-place connectives and ⊥ is a 0-place

connective. Formulae are defined as usual. The formula ⊤ is

introduced as an abbreviation of ⊥  ⊥ , not F as an

abbreviation of ⊥  F, and F  G as an abbreviation of (G

 F)  (F  G). The formula F  G is another way of

writing the formula G  F, we use the second form because

of tradition in the context of logic programming. We will

represent the default negation with .

A signature L is a finite set of atoms. If F is a formula then

the signature of F, denoted as LF, is the set of atoms that occur

in F. A literal is either an atom a (a positive literal) or a

negated atom a (a negative literal).

A logic program is a finite set of formulas. The syntax of

formulas within logic programs has been usually restricted to

clauses with a very simple structure. A clause is, in general, a

formula of the form H  B where H and B are known as the

head and body of the clause respectively. Two particular

cases of clauses are facts, of the form H  ⊤, and constraints,

⊥ B. Facts and constraints are sometimes written as H and

⊥ B respectively.

IV. EVOLVING AGENTS TO PLAY CONNECT FOUR USING

A-PROLOG

The Connect four is a two players game identify as the

black chips player (agent) and the white chips one (user), this

game take place in a rectangle shaped board with seven

columns and six rows. Each player has twenty-one chips.

Turns or movements develop the game, where each

movement attach a chip by the player in the board. The player

with white chips starts the game. If the player puts a chip in a

column, this one must go to the lowest free cell of that

column. As soon as a column has six chips, it can not be

placed any other chip in that column. The objective of each

player is place chips until get four chips connected in a line

horizontally, vertically or diagonally. The first player that

reach the objective wins the game. By the other side, if the

forty-two chips are placed in the board and non-player has

reached four chips connected, the game finishes in tie.

V. THE AGENT PLAYING CONNECTS FOUR

An intelligent agent is a computer program placed in an

environment and it is able to act in an autonomous way in this

environment with the main objective of win. The agent must

show reasoning actions in such way that it can reach the main

objective. For this, the agent uses a set of rules that allow him

decide in every moment which is the best move, so, in this

way reach partial objectives that leads to the main objective.

Next, we describe the general strategy modeled for our agent.

A. The Agent’s General Strategy

We suppose that our agent (player) of connects four is

defined by the next elements:

1) Objectives; 2) Environment; 3) Perceptions; 4) Actions

and 5) its Knowledge.

Among the objectives, the main objective is to win the

game, as well as secondary objectives that include, block,

build and learn from lost games.

1. Objectives. The objective of the agent is win the game.

2. The Environment. The player moves in an environment

compound by a board where another independed player

(an opponent - the user) moves by turns. Each player has

one different chip placement. Time limitations may exist

to choose the next move.

3. Perceptions. We assume that the agent is capable of to

perceive the current state of the game (thought a DLV

file) before perform every move.

4. Actions. The player can propose valid movements for

the game.

5. Knowledge. The player needs a strategy, that allow him

propose a valid movement following the game rules.

The capacity to reach the objective will depend of the

physical limitations (for example, the calculus time) in

DLV the calculus is efficient. A basic case could be limit

to give one valid movement, maybe selected randomly.

The capacity of the game may improve if we have

knowledge to evaluate the board positions (We have it in

DLV), and more on, we can perform a more effective

search. In the last case the calculus of a movement can

take many resources, so is usual for the player has

limited quantity of time to execute the ideal search of a

move.

Then, we can set up a preliminary general vision of the

relation between the different kinds of players in base of the

next diagram.

Figure 1. Agent: General Architecture

In figure 1, we can observe how our agent counts with the

follow configuration: Our agent has a knowledge base

conformed by five files containing: First, a simple strategy, it

contains two basic rules of game. One of these it consists on

blocking a line containing two chips. In addition, another rule

that blocks a hole between a line of two and a chip to form the

line of four. Second, the complex strategy, it contains several

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-5, Issue-6, June 2018

 46 www.ijeas.org

rules such as: Winning shot, tree alignment block shot, two

alignment block shot, building a tree alignment, building a

two alignment and first bottom shot. Third, also, our agent has

another three files that allow him to maintain a general

environment about the development of the game.

Next, we present some of the rules implemented for the agent

are:

1. Simple strategy: Set of rules for a basic level game some

of the employed rules in the strategy are:

g(X,Y,r):-cell(X,Y,v), vertical win move

cell(X,Z,r), Y=Z+1,cell(X,W,r), Y=W+2,

cell(X,R,r), Y=R+3.

t(X,Y,r):-cell(X,Y,v), horizontal left alignment

cell(Z,Y,r), Z=X+1,cell(W,Y,r), W=X+2.

2. Complex strategy: Set of rules for an expert level game

b(X,Y,r):-cell(X,Y,v), cell(Z,Y,a), Z=X+1, cell(W,Y,a),

W=X+2, cell(R,Y,a), R=X+3.

3. Available cells: File with information about available

cells: Set of available cells in every moment.

cell(0,3,v). cell(1,4,v). cell(3,2,v). cell(4,1,v).

cell(5,1,v). cell(6,0,v).

4. Busy cell: File with a set of unavailable cells that may

contain black or white chips.

cell(0,1,r). cell(0,2,a). cell(1,0,r). cell(1,1,r). cell(1,2,r).

cell(1,3,a). cell(2,0,a). cell(2,1,a). cell(2,2,a). cell(2,3,r).

cell(2,4,r). cell(2,5,r). cell(3,0,a). cell(3,1,a). cell(4,0,a).

5. Tokens to move: Set of chips that can be moved by the

answer sets calculus provided by A-Prolog.

{b(6,0,a), c(1,4,r), s(6,0,r)}

Tokens to move correspond to the group of answer sets

calculated by A-Prolog. This set allows our agent to execute

the best action.

VI. IMPLEMENTATION IN A-PROLOG

We have developed a DLV program as Back-End and a

Java program as Front-End that presents the game scenery,

this is, the game execution between a person and a procedure

acting as an opponent player (agent).

The variables “a” and “r” point to the white and black

respectively. The variable “v” points to the empty state.

Is understood as cell(X,Y,E) a position (X,Y) of the game

board compose with an E attribute that defines who is taking

that position. For example:

cell(0,0,a) %(0,0) is taken by a white chip

cell(0,0,r) %(0,0) is taken by a black chip

cell(0,0,v) %(0,0) is empty

The structure is described as follow:

F(X,Y,e):- cell(X,Y,v),

 ...,

 ...,

 ...,

Is derived the consequent F(X,Y,e) if the exposed

conditions in the predecessor are satisfied.

F can be:

1. g(X,Y,r): if it is a winning play.

2. b(X,Y,r): if it is a blockade to a line of 3.

3. c(X,Y,r): if it is a blockade to a line of 2.

4. t(X,Y,r): if it is to advance one it lines from 2 to 3.

5. s(X,Y,r): if it is to advance one it lines from 1 to 2.

6. p(X,0,r): if it is to make a play in the first line.

The exposed conditions determinate if the empty cells

make vertical, horizontal or diagonal lines with the taken

cells, such way that can serve us to block our opponent, move

forward or win the game.

For example:

g(X,Y,r):-cell(X,Y,v),

cell(X,Z,r), Y=Z+1,

cell(X,W,r), Y=W+2,

cell(X,R,r), Y=R+3.

It indicates the following:

We deduce g(X,Y,r) if the cells cell(X,Y,v) exist and

cell(X,Z,r), cell(X,W,r), cell(X,R,r) exists too, and are taken

by black chips and form a vertical line that lead us win the

game, Y=Z+1, Y=W+2, Y=R+3.

In this way, we describe the rest of sentences to win, but

considering horizontal and diagonal lines. The sentence to

block and move forward are derived for the sentence to win.

For example, the sentences for block an alignment of tree are

the same statement to win, the difference is that we ask for the

white ones, no the black. The sentence to move forward in two

chips alignment to a tree chips alignment is ask for two of the

predecessor cells of an empty one. The sentence to make a

move on the first line only check the existence of the cell with

Y equals to zero and if is empty.

VII. STRATEGY BASED ON A-PROLOG

We try that A-Prolog give us a set of answers with the most

appropriate cells to perform the next move. For this, we give

the current condition of the game, this means, the cells that are

empty taken by both players and cells where is valid a move.

We receive the results in the follow order:

1. Winning shot.

2. Tree alignment block shot.

3. Two alignment block shot.

4. Building a tree alignment.

5. Building a two alignment.

6. First bottom shot.

The reason of this order is the priority assigned of the

movements If exists a possibility to win the game in the

current move we will not waste it. In the same way, if is

necessary block, we will not make any other movement.

Figure 2. Connects Four

Modelling Agents with A-Prolog

 47 www.ijeas.org

Let us suppose the following conditions (figure 2):

The red chips player turn. Viewed in A-Prolog perspective

the current game are described by:

cell(0,0,r). cell(0,3,v). cell(0,1,r). cell(1,1,v). cell(0,2,r).

cell(2,2,v). cell(1,0,a). cell(3,1,v). cell(2,0,a). cell(4,1,v).

cell(2,1,a). cell(5,1,v). cell(3,0,a). cell(6,0,v). cell(4,0,r).

cell(5,0,a).

With the deductive rules attached to these facts, the answer

set will be:

{g(0,3,r), c(2,2,r), t(0,3,r), s(3,1,r), p(6,0,r)}

This means:

A winning shot.

A two line blocking shots, and so on.

The agent counts with two A-Prolog files that bounds the

player level.

a) Square.dlv beginner

b) Square.dlv expert

The first level, corresponds to beginners, and excludes the

next conditions:

- To block one lines of two.

- Block the empty cell between a two alignment and a chip

to avoid a four-alignment chip.

-

Figure 3. Connects-Four winner

As we can see (figure 3), the opponent performs his shot to

move forward getting a tree line alignment and leaving the

blue chips player in the position to make a four line alignment.

- Winning with an empty cell between two-line alignment

and a chip in order to create a four-line alignment.

Just like in the previous case, the opponent let past the

opportunity to win the game. This type of deficiencies are

makes them the beginner level. However, in level two, we

consider all possible ways to achieve a four-line alignment. In

addition, the importance of reduce the opportunity that the

opponent have to form several tree line alignments by

blocking all two line alignments. So, in the state shown in the

figure 3, win the one that has the black cells.

VIII. INCORPORATING LEARNING TO THE AGENT

In this section, we present a new component of learning that

we have add to our agent. So that an agent is autonomous,

agents must employ some form of learning capacity. This

capacity will allow being possible to build true intelligent

agents. A learning component will allow the agents to

improve the efficiency of its game, just as it happens in the

case of people. In the general model of discounted repeated

games with imperfect information, the set of payoffs

attainable via pure-strategy sequential equilibrium becomes

larger as the observability of the past actions increases. We

use the information generated in game that has gotten lost

previously, with the purpose that the agent can learn of this.

This component allows to our agent to learn by means of a

process based on the repetition. It is important to point out

that this process needs to be continued working incorporating

a more robust methodology.

IX. CONCLUSION AND FUTURE WORK

A Computational logic and particularly A-Prolog proved to

be a successful approach to several aspects of agent systems

design. Knowledge and reasoning are important for artificial

agents and form the cornerstone of successful behavior. In

this work, we have presented an interesting example about

logic programming-based agent reasoning applied to

intelligent agents. At the same time, from the computational

logic side we are witnessing a growth in the interest for

agent-systems and multi-agent systems. This is important, and

at the same time outstanding, since there are many examples

like the one presented in a paper that demonstrate its

efficiency and clarity. Our application using ASP is a recent

direction of research seems to push toward a new idea of

intelligent systems combining two paradigms: the object

oriented and logic programming, eliminating the traditional

high gap between theory and practice; this integration

represents an important added value to the design of

intelligent systems based on agents and supported by formal

theories.

As future work, we are working in the agent's design that

allow us to be carried out tasks similar to the one presented

here, but another games such as: The One game, The Domino

game, etc, with the purpose of being able to transfer this

methodology to applications of e-bussines, e-commerce,

e-knowledge, etc. For later on, to incorporate update

processes to agent's knowledge base. This is very important

for applications where our agent's environment is dynamic.

ACKNOWLEDGMENT

We thank the anonymous referees for their useful

suggestions. The academic group of combinatorial algorithms

and learning supports this work.

REFERENCES

[1] M Gelfond, V Lifschitz. The stable model semantics for logic

programming. ICLP/SLP 88, pp.:1070-1080, 1988.

[2] Robert Kowalski. Computational Logic and Human Thinking: How to

be Artificially Intelligent. Cambridge University Press.

978-0-521-19482-2, 2011.

[3] Chitta Baral, Gregory Gelfond, Tran Cao Son and Enrico Pontelli.

Using answer set programming to model multi-agent scenarios

involving agents' knowledge about other's knowledge, pp. 259-266,

2010

[4] Tran Cao Son, Enrico Pontelli, Gregory Gelfond and Marcello

Balduccini. Reasoning about Truthfulness of Agents Using Answer Set

Programming. Proceedings, Fifteenth International Conference on

Principles of Knowledge Representation and Reasoning, 2016

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-5, Issue-6, June 2018

 48 www.ijeas.org

[5] Mauricio Osorio, Fernando Zacarias. On Updates of Logic Programs:

A Properties-Based Approach. Foundations of Information and

Knowledge Systems, Third International Symposium, FoIKS 2004,

Wilhelminenberg Castle, Austria, February 17-20, Proceedings.

Lecture Notes in Computer Science 2942, Springer, pp.231-241, ISBN

3-540-20965-4,2004

[6] V. Lifschitz, D. Pearce and V. Valverde. Strongly Equivalent logic

programs. ACM Transactions on Computational Logic, pp. 526-541.

2001

[7] Helena Rasiowa. An Algebraic Approach to Non-Classical Logics

Journal of Symbolic Logic. Volume 42, Issue 3, 1977

[8] Tran Cao Son, Enrico Pontelli, Gregory Gelfond and Marcello

Balduccini. Reasoning about Truthfulness of Agents Using Answer Set

Programming. Proceedings, Fifteenth International Conference on

Principles of Knowledge Representation and Reasoning, 2016.

Fernando Zacarias Flores is researcher and professor of Computer

Science at the Autonomous University of Puebla. He is a researcher in

practical and theoretical Computer Science and Mobile Technologies, and

has conducted R&D projects in this area since 2000. Results from these

projects have been reported in more than 60 national and international

publications. Professor Zacarias serves in the editorial board of the following

journals: IEEE Latin America Transactions, Engineering Letters,

International Transactions on Computer Science and Engineering, Common

Ground Publishing - Technology, Learning and Social Sciences. He holds a

Ph.D. degree in Computer Science from UDLAP, M.Sc. in Electrical

Engineering from CINVESTAV-IPN and B.Sc. in Computer Science from

BUAP.

Rosalba Cuapa Canto is full-time professor at the Autonomous

University of Puebla. She is a researcher in practical and theoretical mobile

technologies. She holds a PhD degree in Computer Science from

Universidad de Puebla. M.E. in Universidad de Puebla and B.Sc. in

Computer Science from BUAP.

Meliza Contreras Gonzlez is full-time professor´in Computer Science

at the Autonomous University of Puebla.

