Positive Solutions of Periodic Boundary Value Problems for a Class of Second-order Ordinary Differential Equations

Hongliang Kang

Abstract— In this paper, we consider the existence of positive solutions to the second-order periodic boundary value problems

\[\begin{cases} u''(x) + d^2u(x) = \lambda a(x)f(u), x \in (0, T) \\ u(0) = u(T), u'(0) = u'(T). \end{cases} \]

where \(a \in L^1(0,2\pi), \lambda > 0 \).

The main results are as follows:

Theorem A Assume that \(f : [0,2\pi] \times [0,\infty) \rightarrow [0,\infty) \) is continuous. And as far as we know, second-order periodic boundary value problems have not been studied by applying the Leray-Schauder fixed point theorem.

Motivated by the above works, we will apply the Leray-Schauder fixed point theorem to establish the existence of positive solutions to the following second-order periodic boundary value problems

\[\begin{cases} u''(x) + d^2u(x) = \lambda a(x)f(u), x \in (0, T) \\ u(0) = u(T), u'(0) = u'(T). \end{cases} \]

We make the following assumptions:

(H1) \(f : R^+ \rightarrow R \) is continuous, \(f(0) > 0 \), \(\lambda > 0, d > 0 \) and \(d^2 < \frac{4}{T} \);

(H2) \(a \) is a constant on \([0,T]\). and not identically zero, there exists a number \(k > 1 \) such that

\[\int_0^T k(x,y) a^{-}(y)dy \geq k \int_0^T k(x,y) a^{-}(y)dy \]

for every \(x \in [0,T] \), where \(a^{-} \) (resp. \(a^{+} \)) is the positive (resp. negative) part of \(a \). \(K(x,y) \) is the Green’s function of

\[\begin{cases} u''(x) + d^2u(x) = 0, x \in (0, T) \\ u(0) = u(T), u'(0) = u'(T). \end{cases} \]
which implies that $|u|_0 \neq A_\lambda$. Note that $A_\lambda \to 0$ as $\lambda \to 0$. By the Lemma 2.1, A has a fixed point ℓ_λ with $|\ell_\lambda|_0 \leq A_\lambda \leq \epsilon$. Consequently, $\ell_\lambda(x) \geq \lambda \sigma f(0)p(x)$, x $\in [0, T]$, and the proof is complete.

III. PROOF OF THE MAIN RESULT

Proof of Theorem 1.1 Let $q(x) = \int_0^x K(x, y) \kappa^-(y)dy$. By (H2), there exist positive numbers α, $\gamma \in (0, 1)$ such that

$$q(x)|f(s)| \leq \gamma p(x)f(0),$$

(3.1)

for $s \in [0, \alpha]$. Fix $\sigma \in (\gamma, 1)$ and let $\lambda^* > 0$ be such that

$$|\ell_\lambda|_0 + \lambda \sigma f(0)|p|_0 \leq \alpha,$$

(3.2)

for $\lambda < \lambda^*$. Then, by Lemma 2.2, we obtain

$$\int f(x) - f(y) \leq f(0)\left(\frac{\sigma - \gamma}{2}\right),$$

(3.3)

for $x, y \in [-\alpha, \alpha]$ with $|x - y| \leq \lambda^* \sigma f(0)|p|_0$.

Let $\lambda < \lambda^*$. We look for a solution u_λ of (1.3) of the form

$$u_\lambda = v_\lambda + v_{\lambda}.$$

Thus v_{λ} solves

$$\begin{cases}
\int u''(x) + d^2u(x) = \lambda a^+(x)f(\ell_\lambda) + f(\ell_\lambda), & x \in (0, T) \\
u(0) = u(T), u'(0) = u'(T), &
\end{cases}
$$

(2.1)

for each $u \in C[0, T], \ let A : C[0, T] \to C[0, T]$ is completely continuous and fixed points of A are solutions of (2.1). We shall apply the Lemma 2.1 to prove that A has a fixed point for λ small. Let $\epsilon > 0$ be such that

$$f(x) \geq \sigma f(0)\text{ for } 0 \leq s \leq \epsilon.$$

suppose that $\lambda < \frac{2\epsilon}{|p|_0 \ell(\epsilon)}$, where $\ell(t) = \max_{0 \leq s \leq t} f(s)$. Then there exists $A_\lambda \in (0, \epsilon)$ such that

$$\frac{\ell(A_\lambda)}{A_\lambda} = \frac{1}{2\lambda |p|_0}.$$

(3.4)

Let $u \in C[0, T]$ and $\theta \in (0, 1)$ be such that $u = \theta Au$. Then we have

$$0 \leq \frac{\ell(|u|_0)}{|u|_0} \leq \frac{1}{2|p|_0}.$$

(3.5)

which is a contradiction with (3.1), implies that

$$\frac{\ell(|u|_0)}{|u|_0} \geq \frac{1}{2|p|_0}.$$
\[
|v(x)| \leq \lambda \frac{\sigma - \gamma}{2} f(0) p(x) + \lambda \gamma f(0) p(x)
\]
\[
= \lambda \frac{\sigma + \gamma}{2} f(0) p(x), \ x \in (0,T)
\]
In particular
\[
|v(x)|_0 \leq \lambda \frac{\sigma + \lambda}{2} f(0) p(x)_0
\]
\[
< \lambda \sigma f(0) p(0)
\]
a contraction, and the claim is proved. By the Leray-Schauder fixed point theorem, \(A \) has a fixed point \(\nu_x \) with
\[
|\nu_x|_0 \leq \lambda \sigma f(0) p(0)_0. \]
Hence \(\nu_x \) satisfies (3.4) and, using Lemma 2.2, we obtain
\[
u_j(x) \geq \omega_k^2 - \nu_j(x)
\]
\[
\geq \lambda \sigma f(0) p(x) - \lambda \frac{\sigma + \gamma}{2} f(0) p(x)
\]
\[
= \lambda \frac{\sigma + \gamma}{2} f(0) p(x)
\]
i.e., \(u_j \) is a positive solution of (1.3). This completes the proof of Theorem 1.1.

IV. APPLICATION

Example 4.1 Consider the following nonlinear second-order periodic boundary value problems
\[
\begin{align*}
u^*(x) + 4u(x) &= \lambda a(x) f(u), \ x \in (0, T) \\
u(0) &= u(T), u'(0) = u'(T)
\end{align*}
\]
(4.1)
where \(\lambda \) is a positive parameter, \(a(x) = \ln x \), \(f(u) = -u^2 + 1 \), \(u > 0 \) is continuous, \(d = 2 \) satisfies the assumption (H1).

Since \(a(x) = \ln x \) is continuous on \([0, T] \), and there exists a number \(k > 1 \) such that
\[
\int_0^T k(x, y)a^+(y) dy \geq k \int_0^T k(x, y)a^-(y) dy
\]
for every \(x \in [0, T] \), where \(a^+ \) (resp. \(a^- \)) is the positive (resp. negative) part of \(a \), \(K(x, y) \) is the Green's function of
\[
\begin{align*}
u^*(x) + 4u(x) &= 0, \ x \in (0, T) \\
u(0) &= u(T), u'(0) = u'(T).
\end{align*}
\]
and
\[
K(x, y) =
\begin{cases}
\frac{\sin 2(x - y) + \sin 2(T - x + y)}{4(1 - \cos 2T)}, & 0 \leq x \leq y \leq T, \\
\frac{\sin 2(y - x) + \sin 2(T - y + x)}{4(1 - \cos 2T)}, & 0 \leq y \leq x \leq T.
\end{cases}
\]
which satisfies the assumption (H2).

By Theorem 1.1, if (H1)–(H2) hold, then there exists a positive number \(\lambda^* \) such that (4.1) has a positive solution for \(0 < \lambda < \lambda^* \).

Acknowledgment
The author is very grateful to the anonymous referees for their valuable suggestions. Our research was supported by the NSFC(71261023).

REFERENCES

Hongliang Kang, Collage of Mathematics and Statistics, Northwest Normal University, Lanzhou, China, Mobile 86- 18419067896