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Abstract— in this work, the response of thin-walled double 

spine mono-symmetric box girder frame to torsional and 

distortional loads was studied using Vlasov’s theory of thin 

walled structures. The potential energy of the system at 

equilibrium was used to obtain the governing differential 

equations of equilibrium for torsional-distortional analysis of 

the box structure, by minimizing same using the principle of 

variational calculus and Euler-lagrange equation. The 

torsional-distortional strain modes interactions were 

considered and used to obtain the coefficients of the governing 

differential equations of equilibrium which were solved using 

method of Fourier sine series to obtain the torsional and 

distortional displacements of the box girder section. The 

maximum torsional and distortional displacements of the 20m 

simple supported box girder were found to be 2.97mm and 

8.77mm respectively 

Index Terms—box girder, distortion, double spine, mono-

symmetric 

I. INTRODUCTION 

      A thin-walled structure is one which is made from thin 

plates joined along their edges. The plate thickness however 

is small compared to other cross sectional dimensions which 

are in turn often small compared with the overall length of 

the member or structure. Thin walled structures have 

gained special importance and notably increased 

application in recent years. The wide use of these thin 

walled structures is due to their great carrying capability and 

reliability and to the economic advantage they have over 

solid (column and beam) structures. Initially the design of 

box girder bridges is related to the design of plate girder 

bridges. However, such design knowledge does not 

contain important primary conditions of cross sectional 

deformations such as warping and distortion. 

         The thin walled beam theory by Vlasov’s [1] marked 

the birth of all research efforts published to date on the 

analysis and design of straight and curved box-girder 

bridges. Many technical papers, reports and books have 

been published in the literature concerning various 

applications of, and even modifications to, the two theories. 

There are several methods available for the analysis of box 

girder bridges.  

Fortunately structural designer are careful enough not to 

ignore the effects of torsion on a structural member. 

Unfortunately however, the effects of warping and distortion 

on a structural component are poorly evaluated or ignored in 

the analysis, simply because of the rigorous mathematics 

involved in their evaluation. There is therefore the need to 

develop a simple analytical model to enable designers put 

into consideration the primary condition of cross sectional 

deformations in the analysis and design of box girder  

 

 

 

structures. Thus a better and more elaborate assessment of 

all the effects of loads on a thin walled box girder bridge 

structure can be achieved by a consideration of phenomena 

of warping torsion and distortion.  

Every box girder bridge structure needs to be designed both 

longitudinally and transversely. Transverse bending 

moment, shear and warping torsion (distortion) are vital 

components  

of the analysis and design. Computation of the above is not 

easily done. Therefore no amount of work will be too much 

on the transverse design of box girder structures. 

II. REVIEW OF PAST WORK 

Before the advent of Vlasov's 'theory of thin-walled beams 

the conventional method of predicting warping and 

distortional stresses is by beam on elastic foundation (BEF) 

analogy. This analogy ignores the effect of shear deformations 

and takes no account of the cross sectional deformations 

which are likely to occur in a thin walled box girder structure. 

A modification of BEF analogy was developed by Hsu et al [2] 

as a practical approach to the distortional analysis of steel box 

girders. The equivalent beam on elastic foundation (BEF) 

method as it is called is an enhancement of the BEF 

method. It is adoptable to the analysis of closed (or quasi-

closed) box girders and provides a simplified procedure to 

account for deformation of the cross section, the effect of rigid 

or flexible interior diaphragms and continuity over the supports. 

Osadebe and Mbajiogu [3] employed the variational 

principles of cross sectional deformation on the assumption 

of Vlasov's theory and developed a fourth order differential 

equation of distortional equilibrium for thin walled box 

girder structures. Their formulation took into considerations 

shear deformations which were reflected in the equation of 

equilibrium by second derivative term. Numerical analysis of a 

single cell box girder subjected to distortional loading enabled 

them to evaluate values of distortional displacement, 

distortional warping stresses and distortional shear which they 

compared with BEF analogy results and concluded that the effect 

of shear deformations can be substantial and should not be 

disregarded under distortional loading. 

Several investigators; Chidolue et al [4] Osadebe and 

Chidolue [5] Chidolue and Osadebe [6] and Mbachu and 

Osadebe [7] considered torsional, distortional and flexural 

stresses in thin-walled mono symmetric box girder 

structures involving single cell and multicell sections on the 

other hand, Xian and Xu [8] Sarode and Vesmawala [9] 

Ozgur [10] and Rubeena [11] considered horizontally 

curved reinforced concrete box girder bridges for torsional-

distortional and flexural stresses while [12] Zhang Yuan-hai 

and Li Qiao Arici et al [13] considered horizontally curved 

steel box girder structures. Eze [14] studied reinforced 
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concrete box column based on the numerous literatures 

consulted in the literature survey the following 

observations and comments can be made. 

1. Research work done on thin-walled box girder structures 

covers essentially single cell box girder structure and multi-cell 

box girder structure either straight or curved. 

2. Literature on multiple spine box girders appears to be 

scarce. Thus, there appears to be a dearth of information on 

the torsional-distortional behavior of thin-walled double 

spine box girder bridge structure.  

III. VLASOV'S STRESS - STRAIN RELATIONS 

The longitudinal warping and transverse (distortional) 

displacements given by Vlasov (1958) are 

  u(x,s) = U(x)  (s)   (1a)

       

  v(x,s) = V(x) (s)   (1b) 

Where U(x) and V(x) are unknown functions governing the 

displacements in the longitudinal and transverse directions 

respectively, and  and  are generalized warping and 

distortional strain modes respectively. These strain modes 

are known functions of the profile coordinates, and are 

chosen in advance for any type of cross section. The 

displacements may be represented in series form as; 

 

u(x,s) = Ui(x)i(s)     (2a)

       

v(x,s) = Vk(x) k(s)     (2b)

      

Where, Ui(x) and Vk(x) are unknown functions which 

express the laws governing the variation of the displacements 

along the length of the space frame. 

 i (s) and k (s) are elementary displacements of the strip 

frame, respectively out of the plane (m displacements) and in 

the plane (n displacements). 

These displacements are chosen among all displacements 

possible, and are called the generalized strain coordinates of a 

strip frame. 

From the theory of elasticity the strain in the longitudinal and 

transverse directions are given by;  

                   (x,s)=  Ui' (x)i(s) and   a 

                x                     (3) 

  v (x,s) =  Vk' (x)k (s)   b 

   x    

The expression for shear strain is (x,s) =  u +  v   

                                                                     s    x 

Or  (x,s) =   'i (s)Ui(x) +  k(s)Vk' (x)  (4) 

 

       Using the above displacement fields and basic stress-

stain relationships of the theory of elasticity the expression 

 (x,s) =      (x,s) = E i(s)Ui'(x)    (5)                   

  x    

       

 (x,s) = G(x,s) = G i'(s)Ui(x)+ k(s)Vk'(x)       (6)

       

The (m+n)  functions sought for, ui (x) and vk (x), are 

determined from (m+n) equations for the strip frame, 

obtained by equating to zero the work done by external and 

internal forces in (m+n) independent virtual displacements  

      Every virtual displacement is as a result of an 

infinitesimal variation experienced by one of the 

generalized strain coordinates which determine the 

position of all joints and bars of the frame. This application 

of the principle of virtual displacements is called the 

method of variations. 

Transverse bending moment generated in the boxes 

structure due to distortion is given by;  

M(x,s) =Mk(s)Vk(x)    (7)   

 

Where Mk(s) = bending moment generated in the cross sectional 

frame of unit width due to a unit distortion, V(x) = 1 

IV. POTENTIAL ENERGY FUNCTIONAL 

 

The potential energy of a box structure under the action of a 

distortion load of intensity q is given by:  

 = U + WE      (8) 

   

Where, 

 = the total potential energy of the box structure,  

U = Strain energy    

WE = External potential or work done by the external loads.  

From strength of material, the strain energy of a structure is 

given by 

U=1            
2
(x,s)/E + 

2
 (x,s)/G t(s)  dxds                                                      

      + M
2 

(x,s) EI(s)    (9)         
And work done by external load is given by;  

WE = qv(x,s)dxds  

=  qVh(x)h(s)dsdx =  qhVhdx    (10)  

    

Substituting expressions (9) and (10) into Eqn. (8) we obtain 

that,  

=1     
2
(x,s)/E+ 

2
 (x,s)/G t(s)  dxds    (11) 

     2      + M
2 
(x,s)/EI(s)- qv(x,s)              

Where,  

 (x,s) = Normal stress   

(x,s) = Shear stress  

M (x,s) = Transverse distortion bending moment  

q = Line load per unit area applied in the plane of the plate  

 

I(s) = t
3
(s) = moment of inertia  

       12(1-v2)  

E = Modulus of elasticity 

G = Shear modulus 

v = poisson ratio 

t = thickness of plate 

Substituting the expression for  (x,s) (eqn (5), (x,s) eqn. (6), 

M (x,s) eqn. (7) and v(x,s) eqn. (1) into eqn (11) we obtain that:  

 =Ei(s)U'i(x)* i(s)Uj"(x)*t(s)dsdx + 

 

+G[i'(s)Ui(x)+k(s)Vk'(x)]*[j'(s)Uj(x)+h(s)Vh'(x)]*t(s

)dsdx  + 

m 

n 

i=1 

K=1 

m 

n 

i =1 

n 

K=1 

m n 

i=1 K=1 

m 

i=1 

m 

i=1 

E 

n 

k=1 

k=1 

L  S 

x s  x 

L  S 

2 
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+1/El [Mk(s)Vk*Mh(s)Vh(x)]dsdx    -∫  
 

 
qhVhdx  (12) 

 

Simplifying further nothing that t(s)ds=dA we obtain; 

 

 =1EUi'(x)Ui'(x)*
'
i(s)j

'
(s)*dAdx 

 

+ 1G Ui(x)Uj(x) 
'
i(s) '

j(s)dAdx 

   2 

+ 1/2GUj(x)Vk'(x)*
'
j(s)k(s)*dAdx 

 

+ 1/2GUj(x)Uh'(x)*  i'(s)h(s)*dAdx 

 

+ 1 G  Vk'(x)Vh'(x) *k(s)h(s)*dAdx 

    2         El(s) 

 

+ 1 Mk(x)Mh(x) *Vk(x)Vh(x)*dxds 

   2      El(s) 

 -qhVhdx      (13)

       

 Let, 

 aij =aji =i(s)j(s)dA   (a)  

  

 bij =bji =i'(s)j'(s)dA   (b)  

  

ckj = cjk =k'(s) j(s)dA   (c)  

  

cih = chi =i'(s)k(s)dA   (d)  

  

rkh = rhk =k(s)h(s)dA;   (e)  

  

skh = shk =   1  Mk(s)Mh(s) ds  (f)          

                  E    EI(s) 

qh = qhds   (g)  (14)

  

Substituting eqns. (14) into eqn. (13) gives the potential energy 

functional: 

 =1Eaij Ui'(x)Ui'(x)dx 

        

+  1 G  bijUi(x)Uj(x)+ckjUk(x)Vj'(x) 

     

+  1G  cihUi(x)Vh'(x)+rkhVk'(x)Vh'(x)  dx 

    2 

+  1Eshk Vk(x)Vh(x)dx   -qhVhdx    (15) 

    2 

The governing equations of distortional equilibrium are 

obtained by minimizing the above functional eqn. (15), with 

respect to its functional variables u(x) and v(x) using Euler 

Largange technique, eqns. (15) and (16). 

 

    d       = 0      (a)         (16)           

 uj   dx    uj    

     d          = 0      (b)      

  Vh  dx    Vh    

  Carrying out the partial differentiation of eqn. (15) with 

respect to Uj and Uj
'
 gives  

   =G[bijUi(x)+ ckjV
'
k(x)], 

 Uj        

     

 

Therefore       d        = 0    

     Ui   dx    U'j   

  

  G[bijUi(x)+ckjV
'
k(x)] -Eaij U

"
i (x) = 0 

Or  EaijU
"
i(x)-GbijUi(x) -GckjV

'
k (x) = 0 

Diving through by G, and re-arranging we obtain;  

  

kaijUi"(x) - bijUi(x)-ckjVk'(x) = 0            (17) 

Where   k = E = 2(1+) 

                  G 

Performing similar operations with respect to Vh and Vh' we 

obtain the second equation as follows. 

 

   = Eshk Vk(x) -qh    

 Vh   

    

   = G[cih Ui(x) +rkh Vk'(x)]   

  h'    

 

d           = G[cih Ui'(x) +rkh Vk'(x)]   

 x    Vh'   

 

        d    = -G[cih Ui'(x)+rkhVk'(x)]+EshkVk(x)-qh =0           

    Vh     dx  Vh'  

  

cih Ui'(x) +rkh Vk"(x) - kshkVk(x) + 1qh =0          (18)  

                                                      G 

Equations (17) and (18) are vlasov’s differential equations of 

distortional equilibrium for a box girder. The matrix form of 

eqns.(17 and 18) are: 

 

     a11  a12  a13    U1"      b11  b12  b13       U1 

     a21  a22  a23   U2"      b21  b22  b23        U2 

     a31  a32  a33    U3"     b31  b32   b33        U3 

 

 

 

     c11   c12   c13   c14        V1' 

     c21   c22   c23   c24       V2'           (19a) 

     c31   c32    c33   c34       V3' 

                        V4' 

 

 

     c11  c12  c13 U1'     s11  s12  s13   s14                V1 

     c21  c22  c23 U2'      s21  s22  s23   s24               V2 

     c31  c32  c33 U3'     s31  s32   s33   s34               V3 

     c41  c42  c43        s41  s42   s43   s44                 V4 

n K=1 

 1=1 

m m 

j=i 

i=1 j= i 

m m 

n n 

J=i K=1 

n m 

h=i i=1 

n n 

h=1  k=1 

n n 

k=1 k=1 

h=1 n 

= 0 

= 0 

= 0 

= 0 

-k + 

k - - 

 π =EaijU
'
i(x); d      = EaijUi

"
(x)  

 Uj                     dx   Uj 

 

 
 Uj    

 

m m n 

i=1 i=1 k=1 

2 

2 
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      r11    r12    r13   r14               V1"            q1 

      r21   r22    r23    r24               V2"             q2 

      r31    r32    r33    r34            V3"             q3                    (19b) 

      r41    r42    r43    r44                V4"             q4 

V. STRAIN MODES 

From the energy formulation of the equilibrium it was noted 

that    and   represent generalized warping and distortional 

strain modes respectively and from eqns. (2a and 2b)  
 
( ) and 

   ( ) are elementary displacements) respectively. It was also 

noted that these displacements are chosen among all 

displacements possible and are called the generalized strain 

coordinates of a strip frame. Thus, Vlasov’s coefficients of 

differential equations of equilibrium, eqn.(14), which involve a 

combination of these elementary displacements and their 

derivatives may be obtained by consideration of the box girder 

bridge cross section as a strip frame and then applying unit 

displacement one after the other at the nodal points of the frame 

in longitudinal direction, to determine the corresponding out of 

plane displacements at the joints in n possible transverse 

directions, the corresponding transverse (in-plane) 

displacements can also be obtained. The first order derivatives 

of these displacement functions may be obtained by numerical 

differentiation and used for computation of the coefficients 

with the aid of Morh’s integral for displacement computations. 

Consideration of the double spine mono-Symmetric strip frame 

in fig 1.shows that it has eight degrees of freedom in the 

longitudinal direction and seven in the transverse direction. 

From equation (2a and 2b), where in this case m = 8 and n = 7, 

it follows that we have fifty-six displacement quantities to 

compute and hence, fifty-six differential equations of 

distortional equilibrium will be required.The application of 

Vlasov’s generalized strain modes as modified by Varbanov 

(1970) reduces the number of displacement quantities and 

hence the differential equations of equilibrium required to solve 

for them to seven, irrespective of the number of degrees of 

freedom possessed by the structure. 

In the generalized strain modes, there are three strain fields in 

the longitudinal direction  
 
, 
 
, and  

 
. Thus, from eqn. 

 

 
 

Fig.1 Double Spine Mono-Symmetric Box Girder Section  

(2a) we have  (x,s) =  
 
(x)  

 
(s) +  

 
(x)  

 
 (s) +  

 
(x)  

 
(s) 

Or 

 (x,s) = ∑  
 
( )  

 
( )

 

   
                     (20a)

  

 In the transverse direction four strain modes are also 

recognized   ,   and   . Thus, we have  (x,s) =   (x)   (s) 

+   (x)    (s) +   (x)   (s) +   (x)   (s)  Or 

 (x,s) = ∑   ( )   ( )
 

   
                 (20b)

  

Where  
 
 = out of plane displacement parameter when the load 

is acting (vertically) normal to the top flange of the girder, i.e. 

bending is about horizontal axis. 

 
 
 = out of plane displacement parameter when the load is 

acting tangential to the plane of the flanges i.e. bending is about 

vertical axis. 

 
 
 = out of plane displacement parameter due to distortion of 

the cross section i.e; the warping function. 

   = In-plane displacement parameter due to the load giving 

rise to  
 
 

   = In-plane displacement parameters due to the load giving 

rise to  
 
 

   = In-plane displacement parameter due to the distortion of 

the cross section i.e non uniform torsion. 

   In-plane displacement functions due to pure rotation or 

Saint Venant torsion of the cross section. 

VI. STRAIN MODE DIAGRAMS 

Consider a simply supported girder loaded as shown in Fig.2a. 

if we assume the normal bean theory, i.e.; neutral axis 

remaining neutral before and after bending  then the distortion 

of the cross  section will be as shown in Fig.2 where,   is the 

distortion angle (rotation of the vertical axis). The displacement 

 1    at any distance R, from the centroid is given by  1 = R . If 

we assure a unit rotation of the vertical (z) axis then  1 = R   at 

any point on the cross section. Note that  1 can be positive or 

negative depending on the value of R, in the tension or 

compression zone of the girder. Thus,  1 is a property of the 

cross section obtained by plotting the displacement of the 

members of the cross section when the vertical (z-z) axis is 

rotated through a unit radian. 

   Similarly, if the load is acting in a horizontal (y-y) direction, 

normal to the x-z plane in Fig.2, then the bending is in x-z 

plane and y axis is rotated through angle  2 giving rise to  2 , 

displacement out of plane. The values of  2 , are obtained for 

the members of the cross section by plotting the displacement 

of the cross section when y-axis is rotated through a unit radian. 

   The warping function  3, of the beam cross section is 

obtained as detailed in Fig.3a it has been explained that the 

warping function is the out of plane displacement of the cross 

section when the beam is twisted about its axis through the 

pole, one radian per unit length without bending in either x or y 

direction and without longitudinal extension.  1 and  2 are in-

plane displacement of the cross section in x-z and x-y planes 

respectively while  3 is the distortion of the cross section. They 

can be obtained by numerical differentiation of  1  2 and  3 

diagrams respectively. 

= 0 
= 
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 4 is the displacement diagram of the beam cross section when 

the section is rotated one radian in say, a clockwise direction, 

about its centroidal axis. Thus,  4 is directly proportional to the 

perpendicular distance (radius of rotation) from the centroidal 

axis to the members of the cross section. It is assumed to be 

positive if the member moves in the positive directions of the 

coordinate axis and negative otherwise. 

 

 

 

For monosymmetric section, the relevant Vlasov’s coefficients 

for Torsional-distortional equilibrium are a33, b33 = r33, r34 = r43 

r44 

a33 = ʃ  3(s)  3(s) dA = 24.682 

b33 = ʃ  
1
3      

1
3 (s) dA = 9.918 

r34 = ʃ  3  3 dA  = 7.107 

r44 = ʃ 4  4 dA  = 15.33 

Note, 

b33 = C33 = r33 = 9.918 

r34 = r43 = 7.107  

The coefficient Shk = Skh   = 
 

 
 ʃ 
   ( )   ( )

   
                           (21) 

Where M3 (s) is the distortional bending moment 

 

VII. DETERMINATION OF DISTORTIONAL BENDING 

MOMENT FOR THE BOX GIRDER 

 

 

Fig.3a shows the base system for the evaluation of distortional 

bending moment for the double spine mono-symmetric box 

girder. The evaluation of the distortional bending moment 

involves the application of unit rotation X1to X8 at joint 1 to 8 

respectively and applying unit transverse displacement of joints 

based on distortion diagram 

 

Fig.5   Bending Moment Diagram Due to Distortion of the 

Cross Section 

Fig. 4 Base System for Evaluation of Distortion Bending 

Moment  
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Shk = shk = 
 

 
 ʃ 
  ( )   ( )

   
 ds                                                   

Shk = Skh = S33 = 2.891x10
-3

Is only S33 has value 

 

VIII. FORMULATION OF DIFFERENTIAL 

EQUATIONS OF EQUILIBRIUM 

 

The relevant coefficients for torsional-distortional equilibrium 

are a33, b33, c33, c34, r33, r34, r43, r44, and s33. Substituting these 

into the matrix notation equation (8) and (9) we obtain: 

 

k[
   
   
     

] [

  
 

  
 

  
 

] - [
   
   
     

] [

  
 

  
 

  
  
] - [

   
   
     

] 

[
 
 
 
 
  

 

  
 

  
 

  
 ]
 
 
 
 

 = 0 

[

   
   
     
     

] [

  
 

  
 

  
 

] -K [

   
   
     

 
 
 

    

] [

  
 

  
 

  
 

  
 

]  +   

[

   
   
     

 
 

      
        

] = - 
 

 
 [

  
 

  
 

  
 

  
 

]  

 

Multiplying out we obtain  

Ka33   
  – b33U3 – C33  

  - C34  
  = 0   

C33   
  – KS33V3 + r33  

  + r34  
  = - 

  
 

 
   

C43   
  – r43  

  + r44  
  = - 

  
 

 
   

Simplifying further we obtain 

    
   -     

  =       (22a) 

    
   +     

   -     
    =     (22b) 

Where  1 = ka33c43      = ka33 r44;   

   =         -        

   = b33 r44 – c34 c43;  

γ1 =            (23) 

   = -    
  
 

 
 -     

  
 

 
 ;    = (

   
   

 
)  (24) 

 

Torsional – Distortional Analysis of Mono-Symmetric Box 

Girder Structure 

In this section the solutions of the differential equations of 

equilibrium are obtained for the double spine mono-symmetric 

box girder section shown in fig.1. Live loads are considered 

according to AASHTO-LRFD following the HL-93 loading. 

[15] Uniform lane load of 9.3N/mm distributed over a 3m 

width plus tandem load of two 110KN axles. The loads are 

positioned at the outermost possible location to generate the 

maximum torsional effects. A two span simply supported 

bridge deck structure, 20m per span, was considered.          

The obtained torsional loads are as follows 

 3 = 1410.318KN,  4 = 3732.202 KN  

Parameters for the governing equations (22a and 22b) are: 

 1 = K a33 C43;     2 = Ka33 r44 

 1 = r34 C43 - C33 r44;   2 = b33 r44 – C34 C43 

γ1 = C43 K S33;   K1 = C33

  

 
  = C43 

  

 
    

K2 = b33    4  ; S33 = 2.891 x 10
-2

  s 

 

k = 2 (1 + V); k = 2 (1 + 0.25) = 2.5    = 0.25 for concrete  

E = 24 x 10
9
 N/m

2
; G = 9.6 x 10

9
 N/m

2
  

   1 = 2.5 x 24.682 x 7.107 = 438.537  

 2 = 2.5 x 24.682 x 15.153 = 935.016  

 1 = 7.107 x 7.107 – 9.918 x 15.153 = - 99.778  

  2 = 9.918 x 15.153 – 7.107 x 7.107 = 99.778  

x 2.5 x 2.891 x 10 7.107 = 1لا
-2

 = 0.5137  

K1 = 9.918 x 
             

        
 – 7.107 x 

             

        
   =0.0028109 

K2   =  
(                      )

       
 = 3.856x10

-3
 

Substituting the coefficients  1,  2,  1,  2, 1لا, K1and K2         

We obtain equations (25) and (26) below 

 

438.537 V3
IV

 + 935.016 V4
1V

 – 99.778 V4
II
 = 3.856 X 10

-3
 (25a) 

-99.778V4
II
 – 0.5137 V3 = 2.811 x 10

-3
 (25b)  

Integrating by method of Trigonometric Series with accelerated 

convergence we obtain 

 

V3 (x) = 8.773 x 10
-3

 sin 
  

  
     (26)             

V4 (x) = 2.972 x 10
-3

 sin 
  

  
 

3 

G 

9 9 

9 

3 
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Table 1: Variation of torsional and distortional displacements along the length of the girder (20m simply supported) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Variation of torsional and distortional displacement along the length of the girder 

IX. DISCUSSION OF RESULTS:  

The governing differential equations of torsional-distortional 

equilibrium for the double spine mono-symmetric box girder 

structures are given by eqn. (25a and 25b). 

The solution of the torsional-distortional equations of 

equilibrium for the double spine monosymmetric box girder 

studied is given by: V3 = 8.773x10
-3      

  

 
 

V4 = 2.972x10-3 
     

  

 
 

Where L represents the span of the girder  

The torsional and distortional deformations obtained by 

integration of eqn. (25) are given by eqn. (26). The results of 

the analysis are presented in table 1 with graphical 

presentation in fig.3. The maximum (mid-span) torsional 

displacement was 2.97mm while the mid-span distortional 

displacement was 8.77mm. Thus the maximum distortional 

deformation is about 3 times that of torsional deformation. 

This explains why torsional stresses may be neglected but 

not distortional stresses.  

The obtained governing differential equations of torsional-

distortional equilibrium are fourth order coupled linear 

differential equations. The coupling of the equations of 

torsional –distortional equilibrium reveal a strong 

interaction between torsional strain mode and distortional 

strain mode such that torsional analysis of a mono 

symmetric double spine box girder structure cannot be 

carried out independent of distortional analysis without 

introducing errors in the analysis. 

 

X. CONCLUSION: 

The distortional deformations were found to be about three 

times that of torsional deformation. 

The response of double spine mono-symmetric box girder 

structure to torsional and distortional loads is similar to that 

of single and multi cellular box girders obtained from earlier 

studies by other researchers; Chidolue and Osadebe 2012. 

The generalized forth order differential equations for 

torsional-distortional analysis of double spine mono-

symmetric box girder structure and indeed, all mono-

symmetric box girder structures are given by eqns.(22a) and 

(22b) 
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