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Abstract— In this paper, a conic rod carrying arbitrary 

concentrated elements is called the conic rod system. First of all, 

the equation of motion for the longitudinal free vibration of a 

conic rod is transformed into a Bessel equation, and then the 

exact displacement function in terms of the Bessel functions is 

obtained. Next, based on the equations for compatibility of 

deformations and those for equilibrium of longitudinal forces at 

each attaching point (including the two ends of entire bar) 

between the concentrated elements and the conic rod, a 

characteristic equation of the form [H]{C}= {0} is obtained. Now, 

the natural frequencies of the conic rod system can be 

determined from the determinant equation |H| = 0, and the 

associated column vector for the integration constants, {C}, 

corresponding to each natural frequency, can be obtained from 

the simultaneous equation [H]{C}= {0}. The substitution of the 

last integration constants into the displacement functions of all 

the associated rod segments will produce the corresponding 

mode shape of the entire conic rod system. Finally, the 

important factors affecting the longitudinal vibration 

characteristics of a conic rod system will be investigated. To 

confirm the reliability of the presented technique, in this 

research, the exact solutions obtained from the presented 

technique were compared with the numerical solutions obtained 

from the conventional finite element method (FEM). Good 

agreement is achieved. 

 
Index Terms— concentrated elements, conic rod, exact 

solution, longitudinal-vibration. 

I. INTRODUCTION 

    For convenience, in this paper, a conic rod with its 

longitudinal (lateral) surface generated by revolving an 

inclined straight line about its longitudinal axis is called the 

general conic rod (cf. Figure 1), and that generated by 

revolving an inclined curve about its longitudinal axis is 

called the specific conic rod (cf. Figure A1 in Appendix A). 

The main difference between the last two conic rods is that, 

the variation of cross-section area )(xA  is to take the form 

2)()(  LxAxA   for the general conic rod (cf. Figure 1) and 

nbaxxA )()(   for the specific conic rod (cf. Figure A1). In 

the last two expressions for )(xA , x denotes the longitudinal 

axis of the conic rod with origin at the tip (or left) end, A  

represents the cross-sectional area of the general conic rod at 

Lx   with the subscript   denoting the larger end of the 

rod, while a, b and n are constants (with 0b ). Although one 

can obtain the exact solution for the natural frequencies and  
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associated mode shapes of transverse (bending) vibration of 

the general conic rods from the existing literature [1,2], the 

exact solution for those of longitudinal (tension/compression) 

vibration of the foregoing general conic rods is not yet 

obtained to the authors’ knowledge. In spite of the last fact, 

the exact solution for natural frequencies (without mode 

shapes) of the longitudinal vibration of specific conic rods 

with special area variations has been reported in [3, 4, 5]. In 

references [3-5], the exact solution for natural frequencies 

(without mode shapes) of longitudinal free vibration of a 

specific conic rod is obtained by using appropriate 

transformations to reduce its equation of motion to the 

analytically solvable standard differential equation of the 

form dependent upon the specific area variation 
nbxaxA )()(  . From the foregoing literature review, one 

finds that the exact solution for the natural frequencies and 

associated mode shapes of the most practical general conic 

rod (cf. Figure 1) is not yet presented. Therefore, this paper 

tries to present it, particularly for those of a general conic rod 

carrying arbitrary point masses or/and linear springs.  

First of all, the equation of motion for the 

longitudinal-vibration of general conic rod is transformed into 

the Bessel equation so that the exact solution for the axial 

displacements of the conic rod can easily be obtained. It has 

been found that all Bessel functions for the exact axial 

displacements of the general conic rod can be replaced by the 

trigonometric functions so that the difficulty arising from 

differentiations and computer coding of the Bessel functions 

is significantly reduced. Next, the equations for compatibility 

of deformations and equilibrium of forces at a typical 

intermediate node i connecting the conic rod segments (i) and 

(i+1), and those at the two ends of the entire conic rod are 

established. Based on these equations and the prescribed 

boundary conditions, corresponding to each of the trial 

natural frequencies, a characteristic equation for all the conic 

rod segments,  , is obtained, where {C} is a column vector 

composed of the integration constants of all conic rod 

segments and [H] is a square matrix composed of the 

associated coefficients. Using the half-interval method [6], 

one may obtain the natural frequency of the vibrating system 

from the determinant equation |H| = 0, and, in turn, the 

associated integration constants from the characteristic 

equation  . The substitution of the last integration constants 

into the associated displacement function for each of the conic 

rod segments will determine the corresponding mode shape. 

Repetition of the foregoing procedure q times will yield q 

natural frequencies and associated mode shapes. Finally, the 

influence of taper ratio, classical and non-classical boundary 
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(supporting) conditions, and kind (and distribution) of 

concentrated elements (point masses and linear springs) on 

the free vibration characteristics of the conic rod is studied. In 

addition to the exact method presented in this paper, the 

conventional finite element method (FEM) is also used to 

tackle the same problem. To this end, the entire conic rod is 

replaced by a stepped rod composed of a number of uniform 

rod elements with identical element lengths and 

equal-increment (or -decrement) diameters. It has been found 

that the numerical results of the presented exact method and 

those of FEM are in good agreement. 

For convenience, in this paper, a conic rod without any 

attachments is called the bare rod and the one carrying any 

concentrated elements is called the loaded rod. Besides, all 

conic rods indicate the general ones unless particularly 

mentioned..  

II. BESSEL EQUATION FOR THE LONGITUDINAL VIBRATION OF 

A CONIC ROD 

For a non-uniform rod performing longitudinal (axial) 

free vibrations, its equation of motion takes the form [7] 
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where  and E are mass density and Young’s modulus of the 

rod material, respectively, A(x) is the cross-sectional area of 

the rod at position x, and u(x,t) is the axial displacement of the 

rod at position x and time t. For the truncated general conic 

rod as shown in Figure 1, x is the axial coordinate with its 

origin o at the tip end of the complete wedge rod. It is evident 

that revolution of the inclined straight line AB  about the 

horizontal x-axis will generate its longitudinal (lateral) 

surface. 
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Figure 1 The coordinate system for a truncated general conic 

rod with diameter d  at its larger end, diameter sd  at its 

smaller end and length sLLL   . (Note that 

 LdLd ss  .) 

 

If d  and sd  denote the diameters of the larger end and 

smaller end of the truncated conic rod (cf. Figure 1), 

respectively, then the diameter for the cross-section located at 

position x is given by 
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with L  denoting the total length of the complete wedge rod, 

and the cross-sectional area )(xA  is given by 
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where A  is the cross-sectional area of the larger end of the 

rod located at Lx   and is given by 
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For free vibrations, one has 
tjexUtxu )(),(                   (5) 

where U(x) denotes the amplitude of u(x,t),   denotes the 

angular natural frequency of conic rod and 1j . 

Substituting Equations (4) and (5) into Equation (1), one 

obtains 
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where 

E
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Equation (6) is a Bessel equation with its solution composed 

of the Bessel functions. 

III. DISPLACEMENT FUNCTION FOR THE CONIC ROD 

From reference [8], one sees that the solution for the next 

differential equation 

0)()( 2rsr   ybay               (8) 

is given by 

)]()([ 21
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where the primes (') in Eqration (8) denote the differentiations 

with respect to  and the parameters in Equation (9) are given 

by 
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Comparing Equation (8) with Equation (6), one sees that 

x , Uy  , 2r  , 0b , 2a , 2s       (11) 

Thus, from Equation (9), one obtains the solution of Equation 

(6) to be 

)]()([)( 21

  xYcxJcxxU vv            (12) 

where )(zJv  and )(zYv  are the first kind and second kind 

Bessel functions of order v [8]. 

Now, from Equations (10) and (11), one has 

2
1 , 1 ,   , 21v          (13a,b,c,d) 

Substituting the last parameters into Equation (12) and using 

the relationship )()( 2121 zJzY   [8], one has 
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where 

xz                       (15a) 

E

2
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In Equations (14) and (15), the subscript   refers to the 

 -th vibrating mode of the conic rod, while )(

1

C  and )(

2

C  

denote the two corresponding integration constants 

determined by the associated boundary conditions.  
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IV. BOUNDARY CONDITIONS 
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Figure2 (a) A free-free truncated conic rod is supported by a 

number of collars (or flanges) and linear springs; (b) The 

mathematical model for the last conic rod is composed of p 

conic rod segments (denoted by )1( , )2( ,…, )(i , …, )( p ), 

and carrying one point mass im̂  and one linear spring 
ik̂  at 

node i ( )..., ,2 ,1 ,0 pi  . 

 

Figure 2(a) shows a free-free truncated conic rod 

supported by a number of collars (or flanges) and linear 

springs, and Figure 2(b) shows its mathematical model 

composed of p conic rod segments (denoted by )1( , )2( ,…, 

)(i , …, )( p ) and carrying one point mass im̂  and one linear 

spring 
ik̂  at node i ( )..., ,2 ,1 ,0 pi  . The compatibility of 

displacements and equilibrium of forces at the arbitrary 

intermediate node i  located at ixx   require that 
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The boundary condition for the left end of the entire conic rod 

is  
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Similarly, the boundary condition for the right end of the 

entire conic rod is  
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with 

Lxz pp   ,               (21a) 
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Equations (18) and (20) are the non-classical boundary 

conditions. As to the general classical boundary conditions 

(without any attachments at both ends of the rod), they are 

given by 
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pp zU   (for F-F rod)    (22a,b) 

0)( 0,1,  zU , 0)( ,, pp zU   (for C-C rod)    (23a,b) 

0)( 0,1,  zU , 0)( ,, 
pp zU   (for C-F rod)             (24a,b) 

0)( 0,1, 
 zU , 0)( ,, pp zU   (for F-C rod)             (25a,b) 

In Equations (22)-(25), the capital letters F and C denote the 

abbreviations of free and clamped ends, respectively. 

Besides, the symbol )( 0,1,  zU  and )( 0,1,  zU   denote the 

displacement and its first derivative of the 1
st
 rod segment at 

node 0 (cf. Figure 2), respectively. Similarly, )( ,, pp zU   and 

)( ,, pp zU 
  denote those of the final (p-th) rod segment at node 

p, respectively. 

V. DETERMINATION OF EXACT NATURAL FREQUENCIES AND 

MODE SHAPES 

From Equation (14), one obtains the displacement function 

for the i-th conic rod segment to be 
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Thus, the first derivative of )( ,, ii zU   is given by 
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where 

dzdJzJ vv  )(  ( 21v  or 21  )        (27) 

It has been found that much difficulty concerning the 

differentiations and computer coding for the foregoing Bessel 

functions will be removed if the following relationships [9] 

are used 
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From the last two expressions, one obtains 
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Now, the exact natural frequencies and the associated mode 

shapes of a conic rod with various boundary conditions are 

determined in the following.  

A. For the free-free (F-F) conic rod 

For the F-F conic rod as shown in Figure 2, the 

substitutions of Equations (26a) and (26b) into Equation (18) 

lead to 
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Similarly, substituting Equations (26a) and (26b) into 

Equations (16a) and (16b), respectively, one obtains 

0)()()()( ,21

)(

1,2,21

)(

1,1,21

)(

,2,21

)(

,1   iiiiiiii zJCzJCzJCzJC 











                      (32) 



 

Study on the Exact Solution For Natural Frequencies and Mode Shapes of the Longitudinal-Vibration Conic Rod 

Carrying Arbitrary Concentrated Elements 

                                                                                           108                                                                          www.ijeas.org 

0)]()(z[

)]()(z[

)}()( ]z[-{

)]}()( ]z-{[

,21,21

1

2
1)(

1,2

,21,21

1

,2
1)(

1,1

,21,21,

1

,2
1)(

,2

,21,21,

1

,2
1)(

,1

























ii,ii

iiii

iiiii

iiiii

zJzJC

zJzJC

zJzJfC

zJzJfC





















    (33) 

where 
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Finally, the substitutions of Equations (26a) and (26b) into 

Equation (20) lead to 
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where 
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Based on Equations (30), (32), (33) and (35), one obtains 
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integration constants for the  -th mode shape of the p rod 
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and nnH ][  is a nn   (with pn 2 ) square matrix with its 

non-zero coefficients determined by: 
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It is noted that Equations (40) and (41) are required only if 

1p  and )1(  pi  with p and i denoting the total number 

of rod segments and numbering of the intermediate nodes, 

respectively. For the special case of 1p , only Equations 

(39) and (42) are required for the determination of natural 

frequencies and associated mode shapes. Besides, in 

Equations (39)-(42), the values of )( ,iv zJ   and )( ,iv zJ 
  with 

2
1v  and pi ..., ,2 ,1 ,0  are determined by Equations (28) 

and (29). Non-trivial solution of Equation (37) requires that 

its coefficient determinant is equal to zero, i.e.,  

0|| H                    (43) 

Equation (43) is the frequency equation for the F-F conic rod 

carrying p+1 point masses im̂  and p+1 linear springs 
ik̂  

( pi ..., ,2 ,1 ,0 ). In general, the half-interval method [6] is 

used to find the natural frequencies of the vibrating system, 

 ( ,...3,2,1 ), one by one and then, with respect to each 

natural frequency  , one may determine the values of 
)(

,1


iC  

and )(

,2


iC  ( pi ..., ,2 ,1  ) from Equation (37). Finally, the 

substitution of the last integration constants into Equation 

(26a) will determine the corresponding natural mode shape of 

the entire conic rod )(xU . Since the values of point masses 

im̂  and linear springs 
ik̂  are arbitrary including zero, the 

foregoing formulation is available for arbitrary cases of the 

free-free conic rod including the bare one. 

For the special case of only one rod segment (i.e., 1p ), 

Equation (37) reduces to 

0}{][ 1222  CH                (44) 

where 

][}{ )(

1,2

)(

1,112

 CCC               (45a) 











2,21,2

2,11,1

22][
HH

HH
H             (45b) 

In Equation (45b), the coefficients 
1,1H  and 

2,1H  are the 

same as those given by Equations (39a) and (39b), while those 

1,2H  and 2,2H  may be obtained from Equations (42a) and 

(42b) by letting 1p  and 22  pn . The results are 

)( )( ]z-[ 1,211,211,

1

1,2
1

1,2   zJzJfH  
    (46a) 

)( )( ]z-[ 1,211,211,

1

1,2
1

2,2   zJzJfH 

     (46b) 

where 

 Lxz   1,               (47)  

B. For the clamped-clamped (C-C) conic rod 

If the left and right ends of the conic rod as shown in 

Figure 2 are clamped, then the effects of the two point masses 

and two linear springs at the last two ends (i.e., 0m̂ , pm̂ , 
0k̂  

and pk̂ ) are nil. In such a case, the boundary conditions of the 

conic rod are the same as the classical ones given by 

Equations (23a) and (23b). The substitution of Equation (26a) 

into Equations (23a) and (23b), respectively, leads to 

0)()( 0,21

)(

1,20,21

)(

1,1   



 zJCzJC           (48a) 

0)()( ,21

)(

,2,21

)(

,1   pppp zJCzJC 



      `     (48b) 

Therefore, the formulation presented in the last subsection 5.1 

is also available for the free vibration analysis of the C-C 

conic rod, if the coefficients relating to the boundary 

conditions, given by Equations (39a,b) and (42a,b), are 

respectively replaced by 

)( 0,211,1 zJH  , )( 0,212,1 zJH          (49a,b) 

)( ,211, pnn zJH 
, )( ,21, pnn zJH         (50a,b) 

C. For the clamped-free (C-F) or free-clamped (F-C) 

conic rod 

The formulation presented in subsection 5.1 is also 

available for the free vibration analysis of the clamped-free 

(C-F) or free-clamped (F-C) conic rod, if the following 

actions are taken: (i) The coefficients 1,1H  and 2,1H  given by 

Equations (39a,b) must be used if the left end is free, but those 

given by Equations (49a,b) must be used if the left end is 

clamped. (ii) The coefficients 1, nnH  and nnH ,  given by 

Equations (42a,b) must be used if the right end is free, but 

those given by Equations (50a,b) must be used if the right end 

is clamped. It is noted that, for the classical boundary 

conditions, 0ˆˆ
00  km  and 0ˆˆ  pp km . 
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VI. FREE LONGITUDINAL VIBRATION ANALYSIS OF A CONIC 

ROD BY FEM 
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Figure 3 The FEM model: (a) the truncated conic rod (with 

diameter sd  at small end and diameter d  at large end) is 

replaced by en  uniform circular rod elements; (b) the average 

diameter kd  ( enk ,...,3,2,1 ) for the k-th uniform circular 

rod element is determined by 2)( 1 kkk ddd . 

 

In order to use the conventional FEM to tackle the current 

problem, the first step is to replace the conic rod by a stepped 

one composed of en  uniform circular rod elements as shown 

in Figure 3(a). The average diameter of the k-th uniform rod 

element is determined by (cf. Figure 3(b)) 

2)( 1 kkk ddd                (51) 

where kd  and 1kd  are the diameters of cross-sections of the 

original conic rod located at the two ends of the k-th uniform 

rod segment, respectively, and are given by (cf. Figure 3(b)) 





d
L

x
d k

k  












 , 



d
L

x
d k

k  1
1 













 

          (52a,b) 

Thus, the average cross-sectional area of the i-th uniform rod 

element is given by 

42

kk dA                    (53) 

The total mass km  and length k  of the k-th uniform rod 

element are determined by 











 


k

k
k

k
k x

d
x

d
m

4

 

4

 
 

3

1 2

1

2

1 
          (54) 

ekk nLx                  (55) 

Based on the foregoing information for the k-th uniform rod 

element ( enk ,...,3,2,1 ) and Young’s modulus of the rod 

material, one may obtain the mass matrix and stiffness matrix 

of each uniform rod element from [10] 











3

1

6

1

6

1

3

1

][ kk mm , 



























1  1

11  
 ][

k

k
k

AE
k


    (56a,b) 

Assembly of the elemental mass and stiffness matrices for 

each of the uniform rod elements yields the overall mass 

matrix [m] and overall stiffness matrix [k] of the entire conic 

rod. If there exist a point mass km̂  and a linear spring 
kk̂  at 

kxx  , then km̂  and 
kk̂  must be added to the k-th diagonal 

coefficient of the overall mass matrix [m] and that of the 

overall stiffness matrix [k], respectively, i.e., one must replace 

kkm  by kkk mm ˆ  and kkk  by 
kkk kk ˆ . Finally, imposing the 

specified boundary condition of the entire conic rod and 

solving the resulting characteristic equation, one determines 

the natural frequencies and the corresponding mode shapes of 

the conic rod.  

VII. NUMERICAL RESULTS AND DISCUSSIONS 

Unless particularly mentioned, the dimensions of the 

conical rod (cf. Figure 1) studied in this paper are the same as 

those of the rod with taper ratio 01.0  Ld  (i.e., case 

2) shown in Table 1: length of the complete conic rod 

0.5L m, length truncated 0.3sL m, actual length of the 

conic rod 0.2 sLLL  m, diameter at smaller end 

03.0sd m, diameter at larger end 05.0d m, Young’s 

modulus 1110068.2 E 2mN and mass density 

7850 3mkg . It is noted that the foregoing dimensions 

must satisfy the relationship  LdLd ss  , with   

denoting the taper ratio. For convenience, two reference 

parameters are introduced in this paper, one is reference mass 

defined by )(
3

1*

ssLALAm    and the other is reference 

stiffness defined by LEAk ave* , where 42

 dA   and 

42

ss dA   denote the cross-sectional areas at the larger end 

and smaller end of the conic rod, respectively, and 

2)( save AAA    is the average cross-sectional area of the 

conic rod. All the other symbols have been defined previously 

for Figure 1. It is evident that *m  and *k  represents the total 

mass and average stiffness of the conic rod, respectively. 

Based on the foregoing dimensions and physical constants of 

the conic rod, one obtains 

 )(
3

1*

ssLALAm  140226.20 kg and 

 LEAk ave

* 3805728.1 810  N/m with 1415926.3  

being used. 

A. Validation of the presented theory 

One of the reasonable techniques to confirm the reliability of 

the presented theory is to reduce the taper ratio  Ld  of 

the conic rod gradually and to see whether or not its lowest 

several natural frequencies converge to the corresponding 

ones of the associated uniform rod. To this end, the lowest 

five natural frequencies of a conic rod with five taper ratios, 

 = 0.02, 0.01, 0.005, 0.0025 and 0.0010, are studied (cf. 

Figure 4). Corresponding to each taper ratio (designated as 

cases 1, 2, 3, 4 and 5, respectively), the dimensions of the 

conic rod are shown in Table 1. It is noted that the diameter of 

the (right) larger end, 05.0d m, and the rod length 

0.2 sLLL  m are kept unchanged as one may see from 

Figure 4. Besides, the relationship  LdLd ss   is 

hold true for all five cases. The lowest five natural frequencies 

for the five cases of the conic rod in four boundary conditions 

(BC’s) are shown in Table 2 by using single rod segment (i.e., 

p = 1), in which the capital letters, F and C, denote the free and 

clamped ends of the conic rod, respectively. From Table 2 one 

sees that: (i) When the taper ratio   reduces from 0.02 (case 

1) to 0.001(case 5), the lowest five natural frequencies,   

( 51 ) (rad/sec), of the conic rod in either F-F, C-C, C-F 

or F-C BC’s converge to the corresponding ones of the 

associated uniform rod with its exact natural frequencies 

obtained from the formulas given in Appendix B at end of this 
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paper. The above-mentioned exact natural frequencies are 

listed in Table 2 denoted by the bold-faced digits. (ii) For F-F 

and F-C rods, their lowest five natural frequencies decrease 

with the decrease of taper ratios  . This is a reasonable 

result, because the mass of each conic rod near its (left) free 

end increases significantly with the decrease of taper ratio  . 

(iii) The lowest five natural frequencies of the C-F rod 

increase with the decrease of taper ratio  . This is also a 

reasonable result, because the diameter of the (left) clamped 

end of the C-F rod increases with the decrease of its taper ratio 

  and so does the longitudinal rigidity ( sEA ) at its (left) 

clamped support. Although the total mass of the conic rod 

increases also, its influence is less than the above-mentioned 

longitudinal rigidity because most of the increased mass is 

near the (left) clamped end. (iv) For the uniform rod, the 

natural frequencies in C-F support conditions are the same as 

those in F-C conditions, however, this is not true for the conic 

rod, because the natural frequencies of the C-F conic rod are 

different from those of the F-C conic rod, and the larger the 

taper ratio  Ld  the larger the divergence between 

them. (v) For any case of the five taper ratios  , the lowest 

five natural frequencies of the C-C conic rod are the same as 

those of the C-C uniform rod. This agrees with the results 

given in Table 1 of reference [4], in which, the lowest six 

natural frequencies of the two specific C-C conic rods with 

their longitudinal cross-sections shown in Figure A1 of this 

paper (in Appendix A) are very close to the lowest six ones of 

the associated C-C uniform rod. To confirm the reliability of 

the last results, the same problem is solved for the lowest five 

natural frequencies by using the conventional finite element 

method (FEM) with 50 rod elements (i.e., 50en ). The 

results for taper ratios  = 0.02 and 0.001, respectively, are 

listed in the parentheses ( ) of Table 2. It is seen that that the 

lowest five natural frequencies of the C-C conic rod with  = 

0.02 are very close to the corresponding ones with  = 0.001.  
 

0.2L

Unit of dimensions: meter 

0.01)(  03.0  sd

) 0025.0(  045.0  sd

) 005.0(  04.0  sd

) 02.0(  01.0  sd

) 001.0(  048.0  sd

05.0d

 
Figure 4 The profiles for longitudinal cross-sections of the 

conic rod with five different taper ratios (cf. Table 1). 

 

Table 1 The dimensions of a general conic rod with five taper 

ratios (  Ld ).  (Larger-end diameter 05.0d m and 

rod length 0.2L m are kept unchanged.) 

Case  Ld

 
L  

(m) 

sL  

(m) 

sd  

(m) 

L  

(m) 
d  

(m) 

1 0.02 2.5 0.5 0.01 2.0 0.05 

2 0.01 5.0 3.0 0.03 

3 0.005 10.0 8.0 0.04 

4 0.0025 20.0 18.0 0.045 

5 0.001 50.0 48.0 0.048 

Uniform rod — — 0.05 2.0 0.05 

Table 2 Influence of taper ratio (  Ld ) on the lowest 

five natural frequencies   (rad/sec) of the conic rods with 

various boundary conditions (Larger-end diameter 

05.0d m and rod length 0.2L m are kept unchanged.) 

 
B 

C 

S 

C 

A 

S 

E 

  Natural frequencies,   (rad/sec) 

1  2  3  4  5  

F 

 

F 

1 0.0200 9621.44 17200.61 24977.21 32866.11 40814.97 

2 0.0100 8268.95 16232.06 24259.13 32303.56 40355.09 

3 0.0050 8102.75 16145.02 24200.57 32259.50 40319.79 

4 0.0025 8071.38 16129.18 24190.00 32251.56 40313.44 

5 0.0010 8063.68 16125.33 24187.42 32249.64 40311.89 

*Uniform 

rod 

8062.32 16124.64 24186.97 32249.29 40311.62 

C 

 

C 

1 0.0200 8062.32 

#8063.92 

16124.65 

(16135.50) 

24186.97 

(24223.00) 

32249.30 

(32334.41) 

40311.62 

(40477.74) 

2 0.0100 8062.32 16124.65 24186.97 32249.30 40311.62 

3 0.0050 8062.32 16124.65 24186.97 32249.30 40311.62 

4 0.0025 8062.32 16124.65 24186.97 32249.30 40311.62 

5 0.0010 8062.32 

#8063.65 

16124.65 

(16135.26) 

24186.97 

(24222.79) 

32249.30 

(32334.24) 

40311.62 

(40477.59) 

*Uniform 

rod 

8062.32 16124.64 24186.97 32249.29 40311.62 

C 

 

F 

1 0.0200 1948.62 11645.66 19891.87 28030.50 36134.81 

2 0.0100 3244.86 11872.14 20024.36 28124.51 36207.72 

3 0.0050 3675.04 11983.63 20090.26 28171.38 36244.12 

4 0.0025 3860.82 12038.78 20123.08 28194.78 36262.30 

5 0.0010 3964.73 12071.66 20142.73 28208.79 36273.20 

*Uniform 

rod 

4031.16 12093.48 20155.81 28218.13 36280.46 

F 

 

C 

1 0.0200 6596.54 13740.14 21307.95 29088.76 36975.43 

2 0.0100 4894.20 12444.11 20370.84 28372.70 36400.99 

3 0.0050 4402.53 12228.01 20237.14 28276.35 36325.78 

4 0.0025 4204.92 12153.68 20192.05 28244.04 36300.62 

5 0.0010 4098.10 12116.13 20169.41 28227.85 36288.02 

*Uniform 

rod 

4031.16 12093.48 20155.81 28218.13 36280.46 

* The exact natural frequencies of the uniform rod obtained 

from formulas in Appendix B. 

# Natural frequencies obtained from the conventional FEM 

using 50 rod elements ( 50en ). 

   Although the lowest five natural frequencies of the C-C 

conic rod with  = 0.02 are the same as the corresponding 

ones with  = 0.001, obtained from the exact method 

presented in this paper, the associated mode shapes are 

different from each other as shown in Figures 5(a)-(e) for the 

1
st
 -5

th
 modes, respectively. From Figure 5 one sees that the 

lowest five mode shapes of the C-C conic rod with taper ratio 

 = 0.001 (denoted by the dashed curves, ---) look like those 

of a uniform rod, because this conic rod is very close to the 

uniform rod as one may see from Figure 4. However, the last 

statement is incorrect for the ones with  = 0.02 (cf. the solid 

curved in Figure 5, —). From Figure 5 one sees that, for the 

solid curves (with  = 0.02), the local maximum mode 

displacements )(xU  near the left end are much greater than 

those near the right end, because the diameter of the 

cross-section at left end of the conic rod is minimum and that 

at right end is maximum as shown in Figure 4. In spite of the 

fact that the lowest five mode shapes of the C-C conic rod 

with  = 0.02 are much different from those with  = 0.001, 

the locations of nodes for the corresponding mode shapes are 

identical as one may see from Figure 5, and this should be one 

of the reasons that the corresponding natural frequencies are 

identical. In other words, for a C-C conic rod, the effect of 

taper ratio   is to change the envelopes of the amplitudes of 

the longitudinal mode displacements, as shown in Figure 6, 

and it does not affect the locations of the nodes of the 

corresponding mode shapes. Thus, the lowest five natural 

frequencies are not affected by its taper ratios. In Figure 6, 

(a)-(c) are for the conic rod with taper ratio  = 0.02 and 

(a)’-(c)’ are for the same rod with taper ratio  = 0.001. It is 

noted that the thick solid curves (－) for the lowest three 

mode shapes shown in Figures 6(a)-(c) agree with the solid 

curves (－ ) for the lowest three ones shown in Figures 

5(a)-(c); similarly, the thick dashed curves (---) for the lowest 
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three mode shapes shown in Figures 6(a)’-(c)’ also agree with 

the dashed curves (---) for the lowest three ones shown in 

Figures 5(a)-(c). Based on the foregoing reasonable results, it 

is believed that the presented theory should be reliable. 
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Figure 5 The lowest five mode shapes of the C-C rod (cf. 

Table 1) with taper ratios   Ld 0.02 (denoted by solid 

curves ——) and 0.001 (denoted by dashed curves ------): (a) 

1
st
 mode, (b) 2

nd
 mode, (c) 3

rd
 mode, (d) 4

th
 mode and (e) 5

th
 

mode. 

B. Influence of total number of rod elements ( en ) for FEM 

As mentioned at the beginning of this section, the 

dimensions of the conic rod studied in current and subsequent 

subsections are the same as those of the rod with taper ratio 

01.0  Ld  (i.e., case 2) shown in Table 1: 0.5L m, 

0.3sL m, 0.2 sLLL  m, 03.0sd m and 

05.0d m. In order to find the influence of total number of 

rod elements, en , for the FEM on the lowest five natural 

frequencies   (rad/sec) of the conic rod with F-F, C-C, C-F 

and F-C boundary conditions, four subdivisions with en = 20, 

30, 40 and 50 are studied here. The results are shown in Table 

3, in which the exact natural frequencies are taken from cases 

2 of Table 2 and the percentage errors in the parentheses of 

Table 3 are obtained from the formula, 

ExactExactFEM    %100)(%    , with FEM   and 

Exact   denoting the  -th natural frequencies obtained from 

FEM and the presented exact method, respectively. From 

Table 3, it is seen that, among the four boundary conditions, 

the maximum percentage error for first natural frequencies 

obtained from FEM is less than 0.0166% (in C-C BC’s) and 

that for the fifth ones is less than 0.4118% (in C-C BC’s also) 

if en = 50. The last results further confirm the reliability of the 

presented exact method and the FEM, and total number of rod 

elements en = 50 is used for the finite element analysis in the 

next subsections because it leads to the small percentage 

errors.  
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      6(c)            6(c)’ 

Figure 6 The envelopes for amplitudes of the lowest three 

mode displacements of the C-C rod (cf. cases 1 and 5 in Table 

2) with taper ratios   Ld 0.02 (shown in (a)-(c)) and 

0.001 (shown in (a)’-(c)’): (a)(a)’ 1
st
 mode, (b)(b)’ 2

nd
 mode, 

(c)(c)’ 3
rd

 mode. 

C. Effect of point masses 

In the foregoing subsections, all conic rods are the bare 

rods (without carrying any concentrated elements) with 

classical BC’s (without any attachments at their ends). To 

show the effectiveness of the presented exact method for the 

more general cases, in the next subsections, all conic rods 

illustrated are the loaded rod (carrying arbitrary point masses 

or/and linear springs) with non-classical BC’s (with a point 

mass or/and a linear spring at each free end). The loaded conic 

rod studied in this subsection is a free-clamped (F-C) one 

carrying 1, 3 and 5 point masses as shown in Figures 7(a), (b) 

and (c), respectively. In Figure 7(a) the single point mass with 

magnitude *

0
ˆ mm   is located at free end of the rod with 

coordinate 0.30 x m, where 140226.20* m kg is the 

reference mass. In Figure 7(b) the magnitude of each of the 3 

point masses is given by *

3

1ˆ mmi  ( 2 ,1 ,0i ) located at 

0.30 x m, 6.31 x m and 2.42 x m, respectively. It is 

similar to Figure 7(b) that the magnitude of each of the 5 point 

masses as shown in Figure 7(c) is given by 
*

5

1ˆ mmi  ( 4 ,3 ,2 ,1 ,0i ) located at 0.30 x m, 4.31 x m, 

8.32 x m, 2.43 x m and 6.44 x m, respectively. For 

convenience of comparison, the lowest five nature 

frequencies of the corresponding bare F-C conic rod taken 

from case 2 of Table 2 are also listed at the final rows of 

Tables 4, 5 and 6, respectively, and the lowest five mode 

shapes are shown in Figure 8. It is noted that, in Figures 7, 

9-11, the digits, 0, 1, 2, …, denote the numberings of nodes 

and the digits in parentheses, (1), (2), (3), …, denote those of 
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rod segments. As shown in column 4 of Table 4, the total 

numbers of rod segments for Figures 7(a), (b) and (c) are 

sn 1, 3 and 5, respectively. However, the total number of 

rod elements for the FEM is 50en  in present and 

subsequent examples.  

Table 3 Influence of total number of rod elements ( en ) on the 

lowest five natural frequencies   (rad/sec) of the conical 

rod (cf. case 2 in Table 1) with 0.2L m, 03.0sd m, 

05.0d m, 0.3sL m  and 0.5L m, by using FEM. 

B 

C 

S 

en  Natural frequencies,   (rad/sec) 

1  2  3  4  5  

F 

 

F 

20 8276.15 

*(0.08%) 

16296.17 

(0.39%) 

24479.93 

(0.91%) 

32831.31 

(1.63%) 

41390.83 

(2.56%) 

30 8272.15 

(0.03%) 

16260.55 

(0.17%) 

24357.19 

(0.40%) 

32537.73 

(0.72%) 

40814.32 

(1.13%) 

40 8270.75 

(0.02%) 

16248.09 

(0.09%) 

24314.27 

(0.22%) 

32435.19 

(0.40%) 

40613.13 

(0.63%) 

50 8270.10 

(0.01%) 

16242.32 

(0.06%) 

24294.41 

(0.14%) 

32387.78 

(0.26%) 

40520.14 

(0.40%) 

#Exact 8268.95 16232.06 24259.13 32303.56 40355.09 

C 

 

C 

20 8070.63 

(0.10%) 

16191.04 

(0.41%) 

24411.35 

(0.92%) 

32782.06 

(1.65%) 

41354.05 

(2.58%) 

30 8066.01 

(0.04%) 

16154.14 

(0.18%) 

24286.56 

(0.41%) 

32485.56 

(0.73%) 

40773.55 

(1.14%) 

40 8064.40 

(0.02%) 

16141.23 

(0.10%) 

24242.96 

(0.23%) 

32382.08 

(0.41%) 

40571.12 

(0.64%) 

50 8063.65 

(0.01%) 

16135.26 

(0.06%) 

24222.80 

(0.14%) 

32334.24 

(0.26%) 

40477.60 

(0.41%) 

Exact 8062.32 16124.65 24186.97 32249.30 40311.62 

C 

 

F 

20 3246.80 

(0.05%) 

11902.70 

(0.25%) 

20158.51 

(0.66%) 

28487.52 

(1.29%) 

36975.70 

(2.12%) 

30 3245.72 

(0.02%) 

11885.71 

(0.11%) 

20083.88 

(0.29%) 

28285.43 

(0.57%) 

36547.87 

(0.93%) 

40 3245.34 

(0.01%) 

11879.77 

(0.06%) 

20057.82 

(0.16%) 

28214.94 

(0.32%) 

36398.79 

(0.52%) 

50 3245.17 

(0.00%) 

11877.02 

(0.04%) 

20045.77 

(0.10%) 

28182.36 

(0.20%) 

36329.93 

(0.33%) 

Exact 3244.8615 11872.14 20024.36 28124.51 36207.72 

F 

 

C 

20 4893.82 

(0.00%) 

12467.86 

(0.19%) 

20493.28 

(0.60%) 

28718.60 

(1.21%) 

37145.69 

(2.04%) 

30 4894.03 

(0.00%) 

12454.68 

(0.08%) 

20425.28 

(0.26%) 

28526.37 

(0.54%) 

36731.58 

(0.90%) 

40 4894.10 

(0.00%) 

12450.06 

(0.04%) 

20401.47 

(0.15%) 

28459.12 

(0.30%) 

36586.84 

(0.51%) 

50 4894.13 

(0.00%) 

12447.92 

(0.03%) 

20390.44 

(0.09%) 

28428.00 

(0.19%) 

36519.90 

(0.32%) 

Exact 4894.20 12444.11 20370.84 28372.70 36400.99 

# Exact solutions obtained from cases 2 in Table 2. 

* Percentage errors obtained from the 

formula: ExactExactFEM    %100)(%    with FEM   

and Exact   denoting the  -th natural frequencies obtained 

from FEM and the presented exact method. 

Table 4 Influence of point masses (each with magnitude 

mi Nmm ˆ
*ˆ  ) on the lowest five natural frequencies of the 

F-C conic rod (cf. Figure 7), with mN ˆ denoting total number of 

point masses (for each case) and 140226.20* m kg denoting 

reference mass. 

mN ˆ

 

im̂   
s

n  

e
n  

Method Natural frequencies,   (rad/sec) 

1  2  3  4  5  

1 *m  
1 Exact 2250.84 8499.78 16348.09 24336.53 32361.62 

50 FEM 2250.82 8501.18 16358.85 24372.57 32446.86 

3 *

3
1 m  

3 Exact 2838.52 7236.49 11244.68 21889.53 28686.07 

50 FEM 2838.47 7236.69 11245.79 21913.29 28738.89 

5 *

5
1 m  

5 Exact 3035.78 7840.23 12531.10 16637.64 20473.61 

50 FEM 3035.73 7840.52 12532.70 16641.44 20481.00 

Bare rod 1 *Exact 4894.20 12444.11 20370.84 28372.70 36400.99 

* The exact values for the lowest five natural frequencies of 

the bare F-C rod taken from case 2 of Table 2 
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Figure 7 The F-C conic rod (cf. case 2 of Table 1) carrying: 

(a) 1 point mass with magnitude *

0
ˆ mm  located at 

0.30 x m; (b) 3 point masses each with magnitude 

*

3

1ˆ mmi  ( 2 ,1 ,0i ) located at 0.30 x m, 6.31 x m and 

2.42 x m, respectively; (c) 5 point masses each with 

magnitude *

5

1ˆ mmi  ( 4 ,3 ,2 ,1 ,0i ) located at 0.30 x m, 

4.31 x m, 8.32 x m, 2.43 x m and 6.44 x m, 

respectively. 

 

From Table 4, one sees that the influence on the 1st natural 

frequency of the loaded rod decreases with the increase of 

total number of point masses, mN ˆ , carried by the rod (for 

each case), and this trend is reverse for the influence on the 4
th

 

and 5
th

 ones. The last phenomenon has something to do with: 

(i) the summation of the point masses for either Figure 7(a), 

(b) or (c) is constant, i.e., *

1

ˆ ˆ mm
mN

j j  
, (ii) the point mass at 

free end of either Figure 7(a), (b) or (c) is located at the crest 

of each mode shape shown in Figure 8, (iii) the effect of 

concentrated mass is greater than that of the distributed 

masses and (iv) the relative positions between the 

intermediate point masses (in Figure 7) and the intermediate 

nodes (or crests) of the associated mode shapes (in Figure 8). 

It is seen that all numerical results obtained from the 

presented exact method are very close to those obtained from 

the conventional FEM. 
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Figure 8 The lowest five mode shapes of the bare F-C conic 

rod (with corresponding natural frequencies shown in case 2 

of Table 2). 
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D. Effect of linear springs 

The conic rod studied in this subsection (Figure 9) is the 

same as that studied in the last subsection (Figure 7), but all 

the point masses are replaced by the linear springs each with 

stiffness 
ki Nkk ˆ

*ˆ  ( ... ,2 ,1 ,0i ), where 
k

N ˆ  denotes the 

total number of linear springs for each case. Because the 

locations for the linear springs in Figure 9 are the same as 

those for the point masses in Figure 7, so are the numberings 

of nodes and rod segments. The results are shown in Table 5. 

It is found that the trends of the lowest five natural frequencies 

of the loaded conic rods given in Table 5 are opposite to those 

given in Table 4, because the effect of the linear springs 

attached to the rod (in Figure 9) are opposite to that of the 

point masses carried by the same rod shown in Figure 7. One 

of the main difference between the effect of point masses (cf. 

Table 4) and that of linear springs (cf. Table 5) is that the 

point masses reduce the lowest five natural frequencies of the 

conic rod significantly as one may see from Table 4, but the 

effect of linear springs is significant for the first natural 

frequency only and is negligible for the 2
nd

 to 5
th

 ones as one 

may see from Table 5. In other words, the overall effect of 

linear springs is much smaller than that of the point masses for 

the present example.  

Table 5 Influence of linear springs (each with stiffness 

ki Nkk ˆ
*ˆ  ) on the lowest five natural frequencies of the F-C 

conic rod (cf. Figure 9), with
k

N ˆ  denoting total number of 

linear springs and 8* 103805728.1 k N/m denoting 

reference stiffness. 

k
N ˆ

 

ik̂   sn  

en  

Method Natural frequencies,   (rad/sec) 

1  2  3  4  5  

1 *k  

1 Exact 6132.77 13271.36 20934.92 28792.88 36733.87 

50 FEM 6133.10 13276.36 20956.47 28850.89 36856.24 

3 *

3

1 k  

3 Exact 6013.96 12900.66 20620.58 28683.31 36551.71 

50 FEM 6014.13 12905.03 20641.06 28740.53 36672.12 

5 *

5

1 k  

5 Exact 5862.64 12844.06 20614.73 28548.82 36552.89 

50 FEM 5862.75 12848.33 20635.11 28605.25 36673.43 

Bare rod 1 Exact 4894.20 12444.11 20370.84 28372.70 36400.99 
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Figure 9 The F-C conic rod carrying: (a) 1 linear spring with 

stiffness *

0
ˆ kk  ; (b) 3 linear springs each with stiffness 

*

3

1ˆ kki  ( 2 ,1 ,0i ); (c) 5 linear springs each with stiffness 

*

5

1ˆ kki  ( 4 ,3 ,2 ,1 ,0i ), where 8* 103805728.1 k N/m 

(reference stiffness). The positions of the linear springs 
ik̂  are 

identical to those of the corresponding point masses im̂  

shown in the caption of Figure 7. 

 

Table 6 Influence of both point masses im̂  and linear springs 

ik̂  (each with 
mi Nmm ˆ

*ˆ  and 
ki Nkk ˆ

*ˆ  ) on the lowest 

five natural frequencies of the F-C conic rod (cf. Figure 10), 

with mN ˆ =
k

N ˆ  denoting total number of point masses (or 

linear springs), 140226.20* m kg and 
8* 103805728.1 k N/m. 

mN ˆ

k
N ˆ  

im̂  

ik̂   

sn  

en  

Method Natural frequencies,   (rad/sec) 

1  2  3  4  5  

1 *m  

*k  

1 Exact 3269.30 8543.23 16353.91 24338.27 32362.36 

50 FEM 3269.27 8544.61 16364.66 24374.32 32447.59 

3 *

3
1 m

*

3

1 k  

3 Exact 3559.44 7548.14 11455.19 21906.26 28699.86 

50 FEM 3559.38 7548.36 11456.35 21930.02 28752.66 

5 *

5
1 m  

*

5

1 k  

5 Exact 3669.93 8099.98 12703.30 16775.09 20584.53 

50 FEM 3669.87 8100.31 12704.97 16778.97 20592.04 

Bare  rod 1 Exact 4894.20 12444.11 20370.84 28372.70 36400.99 

E. The combined effect of both point masses and linear 

springs 

The conic rod studied in this subsection is also the same as 

the one studied in the last two subsections, but both the point 

mass im̂  in Figure 7 and the linear spring 
ik̂  in Figure 9 are 

attached to the same corresponding node i in Figure 10. 

Because the locations and magnitudes of the point masses and 

linear springs studied in this subsection are the same as the 

corresponding ones given in the last two subsections, the 

overall effect for the combination of point masses and linear 

springs should be the net effect of the point masses only and 

the linear springs only. Since, as shown in the last subsection, 

the effect of point masses only are much greater than that of 

linear springs only, it is under expectation that the net effect of 

both point masses and linear springs is similar to the effect of 

the point masses only. This is one of the reasons why, in Table 

6, the first natural frequency is significantly influenced by the 

attachment of both point masses and linear springs, but the 2
nd

 

to 5
th

 natural frequencies of the loaded rod are very close to 

those given in Table 4 for the point masses only.  
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Figure 10 The F-C conic rod carrying: (a) 1 point mass 0m̂  

and 1 linear spring 
0k̂  (with *

0
ˆ mm  and *

0
ˆ kk  ); (b) 3 
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point masses im̂ and 3 linear springs 
ik̂ (with *

3

1ˆ mmi  and 

*

3

1ˆ kki  , 2 ,1 ,0i ); (c) 5 point masses im̂ and 5 linear 

springs 
ik̂ (with *

5

1ˆ mmi  and *

5

1ˆ kki  , i 0, 1, 2, 3, 4), 

where 140226.20* m kg and 8* 103805728.1 k N/m. The 

positions of the point masses im̂  (and linear springs 
ik̂ ) are 

identical to those of the corresponding point masses 
im̂  

shown in the caption of Figure 7. 

F. Free vibration analysis of an elastic-support F-F conic 

rod carrying multiple point masses 

The final example studied in this paper is a free-free (F-F) 

conic rod elastically supported by four identical linear springs 

each with stiffness 
ki Nkk ˆ

*ˆ   as shown in Figure 11. The 

dimensions and physical constants of the conic rod are the 

same as those for the last examples. From Figure 11 one sees 

that the conic rod is supported by two springs at its two ends 

and by another two springs at two intermediate nodes located 

at x 3.0, 3.6, 4.4 and 5.0m, respectively. The lowest five 

natural frequencies for the elastic-support rod carrying 0, 2 

and 3 point masses are shown in Table 7, where 

mi Nmm ˆ
*ˆ  with mN ˆ  denoting the total number of point 

masses for Figure 11(b) or (c). The lowest five mode shapes 

for the elastic-support rod carrying 0 point mass (cf. Figure 11 

(a)) are shown in Figure 12. From Table 7 and Figure 12 one 

sees that the natural frequency for the mode shape denoted by 

the dashed line with circles (―○ ―) is 6955.2581)(

0 a  

rad/sec. Because the longitudinal deformation of this mode 

shape is very small and the corresponding natural frequency 

)(

0

a  is very close to  **)(

rig mka  2618.1679 rad/sec, it 

is called the quasi rigid-body mode in this paper. Since the 

reference mass 140226.20* m kg is equal to the total mass 

of the conic rod and the summation of the stiffness of the four 

linear springs is equal to the reference stiffness 
8* 103805728.1 k N/m, the true rigid-body natural 

frequency of the vibrating system shown in Figure 11(a) is 

given by 
**)(

rig mka   if the conic rod is rigid. Similarly, 

the true rigid-body natural frequency for the vibrating system 

shown in Figure 11(b) or (c) is given by 

)2( **(c)

rig

(b)

rig mk = 1851.3242 rad/sec, which is very 

close to the quasi rigid-body natural frequencies listed in 

Table 7 ( )(

0

b 1811.6539 or )(

0

c 1829.7592 rad/sec). It is 

noted that the summation of the point masses in Figure 11(b) 

or (c) is equal to the reference mass *m , thus, the effective 

mass of the vibrating system shown in Figure 11(b) or (c) is 

equal to *2m . 

  From Table 7 one also finds that the lowest four elastic 

natural frequencies of the elastic- support conic rod shown in 

Figure 11(a) are very close to the corresponding ones of the 

bare rod listed in the final row of Table 7 except the first one 

1 . Now, one may compare the lowest four elastic natural 

frequencies of the vibrating system shown in Figure 11(b) or 

(c) with those shown in Figure 11(a), because the only 

difference between them is the total number of point masses. 

It is under expectation that the values of 1  to 4  for the 

conic rod shown in Figure 11(b) or (c) are much lower than 

those shown in Figure 11(a), because there exist 2 or 3 point 

masses for the rod in Figure 11(b) or (c), and no point mass 

for the rod in Figure 11(a). In addition to the lowest four 

elastic natural frequencies, the lowest three elastic mode 

shapes of the loaded rod are compared with the corresponding 

ones of the bare rod in Figure 13. In which, the mode shapes 

of the loaded rod are denoted by the solid curves (——) and 

those of the bare rod by the dashed curves (------), besides, the 

1
st
, 2

nd
 and 3

rd
 mode shapes are represented by the symbols, 

,  and ▲, respectively. Because the corresponding natural 

frequencies are much different from each other (cf. Table 7) 

so are the corresponding mode shapes shown in Figure 13.  

 

Table 7 Influence of point masses im̂  on the lowest five 

natural frequencies of the F-F conic rod elastically supported 

by four linear springs 
ik̂  (each with stiffness 4ˆ *kki  ) (cf. 

Figure 11) with 8* 103805728.1 k N/m and 

140226.20* m kg. 

mN ˆ

 

im̂  

 

sn  

en  

Method Natural frequencies,   (rad/sec) 

* 0  1  2  3  4  

0 ― 

 

3 Exact 2581.69 8885.13 16499.83 24558.71 32507.80 

50 FEM 2581.76 8886.62 16510.65 24595.39 32593.63 

2 *

2
1 m  

5 Exact 1811.65 6537.30 13403.10 20895.76 25071.42 

50 FEM 1811.67 6537.68 13405.91 20919.52 25102.66 

3 *

3
1 m  

6 Exact 1829.75 5609.92 9847.18 21884.29 25126.20 

50 FEM 1829.77 5610.10 9848.21 21908.58 25156.75 

Bare rod 1 Exact ― 8268.95 16232.06 24259.13 32303.56 

* Quasi rigid-body natural frequencies. 
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Figure 11 The F-F conic rod supported by four linear springs 

(each with stiffness *

4

1ˆ kki  ( 3 ,2 ,1 ,0i ) located at 0.3x , 

3.6, 4.4 and 5.0m, respectively, and carrying: (a) no point 

mass; (b) 2 point masses each with magnitude 
*

2

1ˆ mmi  ( 2 ,1i ) located at 8.31 x m and 6.42 x m, 

respectively; (c) 3 point masses each with magnitude 
*

3

1ˆ mmi  ( 3 ,2 ,1i ) located at 2.31 x m, 0.42 x m and 

8.43 x m, respectively. 

VIII. CONCLUSIONS 

1 In addition to the computation efficiency, the accuracy of 
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the numerical results of an approximate method is also an 

important factor affecting its availability. Therefore, the 

presented exact method for obtaining the natural 

frequencies and associated mode shapes of the 

longitudinal-vibration general conic rod with or without 

carrying any number of point masses and/or linear 

springs will be significant for evaluating the accuracy of 

various existing approximate methods concerned (such 

as FEM). 

2 The formulation of this paper is very flexible, because: (i) 

the locations of the concentrated elements on the rod are 

arbitrary; (ii) the total number of concentrated elements 

attached to the rod is also arbitrary including zero; (iii) 

each node may be attached by either a point mass or a 

linear spring or both of them. 

3 For free vibrations of the general conic rods carrying any 

number of point masses and/or linear springs with 

various (classical or non-classical) boundary conditions, 

the modified numerical assembly method introduced in 

this paper significantly reduces the difficulty for 

obtaining the exact solution of the problem. 

4 Since all Bessel functions are replaced by the associated 

trigonometric functions in this paper, much difficulty 

concerning the differentiations and computer coding of 

the Bessel functions is removed. 

5 For a general conic rod with clamped-clamped (C-C) 

boundary conditions, the taper ratio  Ld  does not 

affect its lowest several natural frequencies but 

significantly influences the associated mode shapes, 

where d  and L  denote the diameter and axial 

coordinate at the larger end of the conic rod, respectively. 

For each mode shape, the larger the taper ratio of the rod, 

the larger the divergence between the local maximum 

mode displacement near its smaller end and that near its 

larger end. 

6 For a uniform rod, the natural frequencies of the 

clamped-free (C-F) one are the same as those of the 

free-clamped (F-C) one. However, the last statement is 

incorrect for a conic rod, because the natural frequencies 

of the C-F conic rod are different from those of the F-C 

conic rod, and the divergence between them is dependent 

upon the magnitude of taper ratio  Ld . 

7 For the conic rod studied in this paper, if the reference 

mass is defined by )(
3

1*

ssLALAm    and the 

reference stiffness defined by LEAk ave* , where sA  

and sL  are the cross-sectional area and axial coordinate 

at smaller end, A  and L  are those at larger end of the 

conic rod, respectively, sLLL    is the rod length and 

2)( save AAA    is the average cross-sectional area, 

and if the summation of point masses is equal to the 

reference mass (i.e. 
*ˆ mm j  ) and that of stiffness of 

linear springs is equal to the reference stiffness (i.e., 
*ˆ kk j  ), then the effect on the lowest five natural 

frequencies of the F-C loaded rod carrying point masses 

( jm̂ ) only are much greater than that carrying linear 

springs ( jk̂ ) only. Because of the last phenomenon, the 

influence on the free vibration characteristic of a loaded 

rod carrying both point masses and linear springs are 

mainly dependent on the point masses. 

8 For a free-free (F-F) rod supported by arbitrary linear 

springs jk̂  and carrying a number of point masses jm̂ , 

there exists a quasi rigid-body natural frequency 0  to 

be very close to the true one given by 

)(rig bmMK  , where bm  is total mass of the rod, 

 
 k

N

j jkK
ˆ

1

ˆ  and  
 k

N

j jmM
ˆ

1
ˆ  with jm̂  and mN ˆ  

denoting the total number of linear springs and point 

masses, respectively. 
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The lowest 5 mode shapes for the elastic-support

conic rod without carrying point mass

Quasi rigid-body mode
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Figure 12 The lowest five mode shapes of the elastic-support 

F-F conic rod without carrying any point mass as shown in 

Figure 11(a). 
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Lowest 3 mode shapes of the "loaded" rod

and those of the "bare" rod

1st mode shape of the "loaded" rod

2nd mode shape of the "loaded" rod

3rd mode shape of the "loaded" rod

1st mode shape of the "bare" rod

2nd mode shape of the "bare" rod

3rd mode shape of the "bare" rod

 
Figure 13 Comparison between the lowest three elastic mode 

shapes of the loaded conic rod shown in Figure 11(c) (denoted 

by the solid curves, ——) and those of the associated bare rod 

(denoted by the dashed curves, -----). The symbols, ,  and 

▲, represent the 1
st
, 2

nd
 and 3

rd
 modes, respectively. 

APPENDIX A CROSS-SECTIONS FOR SPECIFIC CONIC ROD WITH 

AREA VARIATION 
4)()( baxxA   

In references [3, 4, 5], the area variation of the conic rods is 

to take the specific function 
4)()( baxxA                  (A.1) 

Thus, the radius variation of the conic rods is given by 
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 2)()()( baxxAxr           (A.2) 

From the numerical examples illustrated in reference [4], one 

sees that a = 1, 2; b = 1 and L = 1. Therefore, the radius 

variation )(xr  along the longitudinal x-axis is shown in Fig, 

A1 for the cases of a = 1 (denoted by the solid curves, ――) 

and a = 2 (denoted by the dashed curves, ------). From the 

figure, it is seen that revolution of the inclined solid curve 

AB  about the horizontal x-axis will generate the longitudinal 

(lateral) surface of the conic rod denoted by the solid lines (

――). Similarly, revolution of the inclined dashed curve BA   

about the horizontal x-axis will generate that of the conic rod 

denoted by the dashed lines (------). 
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Figure A1 Profiles of longitudinal cross-sections of the 

specific conic rods with area variations 4)1()(  xxA  

(denoted by the solid lines, ―― ) and 4)12()(  xxA  

(denoted by the dashed lines, -------). 

APPENDIX B EXACT NATURAL FREQUENCIES AND MODE 

SHAPES OF A UNIFORM ROD 

From reference [7] one may derive the next formulas for 

the exact natural frequencies and mode shapes of a 

longitudinal-vibration uniform rod with various boundary 

conditions: 

(i) F-F rod and C-C rod 

  The exact natural frequencies for the longitudinal vibrations 

of a uniform rod with free-free (F-F) boundary conditions are 

the same as those with clamped-clamped (C-C) ones. They are 

given by 

L   (   ,...,3 ,2 ,1 ,0 )         (A.3) 








 


E

L

E

L

L
   (   ,...,3 ,2 ,1 ,0 )     (A.4) 

However, the associated mode shapes are different from each 

other and given by 

)cos()( LxAxU      (   ,...,3 ,2 ,1 ,0 )    (A.5) 

for F-F rod, and 

)sin()( LxAxU     (   ,...,3 ,2 ,1 )         (A.6) 

for C-C rod. 

Since 0  represents the rigid-body mode, the formulas 

given by Equations (A.3) and (A.4) with 0  are correct 

only for the F-F rod. 

(ii) C-F rod 

  The exact natural frequencies and mode shapes of a uniform 

rod with clamped-free (C-F) boundary conditions are given 

by 

L2


   (   ..., ,5 ,3 ,1 )               (A.7) 








 


E

L

E

L

L

2
  (   ..., ,5 ,3 ,1 ) 

  





E

L

s
s

2

)12( 
 (   ..., ,3 ,2 ,1s )      (A.8) 











L

x
AxU

2

 
sin)(


  (   ..., ,5 ,3 ,1 ) 

  






 


L

xs
AxU ss

2

 )12(
sin)(


(   ..., ,3 ,2 ,1s )   (A.9) 

(iii) F-C rod 

    The exact natural frequencies and mode shapes for a 

uniform rod with free-clamped (F-C) boundary conditions are 

given by 

L2


   (   ..., ,5 ,3 ,1 )           (A.10) 








 


E

L

E

L

L

2
  (   ..., ,5 ,3 ,1 ) 

 






E

L

s
s

2

)12( 
 (   ..., ,3 ,2 ,1s )      (A.11) 











L

x
AxU

2

 
cos)(


   (   ..., ,5 ,3 ,1 ) 

  






 


L

xs
AxU ss

2

 )12(
cos)(


(   ..., ,3 ,2 ,1s )  (A.12) 

It is noted that, the frequency parameters   given by 

Equation (A.10) are the same as those given by Equation 

(A.7), but the corresponding mode shapes )(xU  defined by 

Equation (A.12) are different from those defined by Equation 

(A.9). 
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