

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-4, Issue-3, March 2017

 73 www.ijeas.org



Abstract— Hash Function is a special class of function that

has certain properties which make it suitable for use in

cryptography. Cryptographic hash functions are widely used in

digital signatures, message authentication codes (MAC) and also

other forms of authentication. They are widely used insecurity

protocols, passwords and pseudorandom number generation.

MD5, SHA, RIPEMD and Whirlpool are some of the hash

functions already available in real time applications. These

algorithms involve more number of operations and iterations

and thereby consume more time. In this paper, a new hash

function using stack data structure with page replacement

principle is proposed. From the experimental, it is observed that

the proposed method is simple and easy to implement for less

volume of data.

Index Terms— Cryptography, Encryption, Stack

I. INTRODUCTION

 Hash functions are extremely useful and appear in almost

all information security applications. A cryptographic hash

function is a hash function which takes an input of arbitrary

size and returns a fixed-size alphanumeric string, which is

called the hash code. Practical applications include message

integrity checks, digital signatures, authentication, and

various information security applications. A hash function

takes a string of any length as input and produces a fixed

length string which acts as a kind of "signature" for the data

provided [1]. A person knowing the "hash value" is unable to

know the original message, but only the person who knows

the original message can prove the "hash value" is created

from that message.

A cryptographic hash function should behave as much as

possible like a random function while still being deterministic

and efficiently computable[3].A cryptographic hash function

is considered "insecure" from a cryptographic point of view,

if either of the following is computationally feasible[1]:

a) Finding a (previously unseen) message that matches a

given hash values.

b) Finding "collisions", in which two different messages

have the same hash value.

An attacker who can find any of the above computations

can use them to substitute an authorized message with an

unauthorized one. Ideally, it should be impossible to find two

different messages whose digests ("hash values") are similar;

nor would one want an attacker to be able to learn anything

useful about a message given only its digest("hash

values")[1].

In the proposed method, the concept of stack along with

 Sivakumar.T, Department of Information Technology PSG College of

Technology, Coimbatore-641004, India

Sowmya .P, Department of Information Technology PSG College of

Technology, Coimbatore-641004, India

 Utharaa.S, Department of Information Technology PSG College of

Technology, Coimbatore-641004, India

page replacement principle, used for memory management, is

utilized to develop a new hash function. The hash function

proposed here is a one way function, so it won‘t be possible to

get the input from the hash value. Page replacement principle

is used so that there won‘t be any repetition of characters in

the hash code.

II. LITERATURE SURVEY

Cryptographic hash functions are an important to achieve

certain security goals such as authenticity, digital signatures,

digital time stamping, and entity authentication. They are also

strongly related to other important cryptographic tools such as

block ciphers and pseudorandom functions [5].There are

several methods to use a block cipher to build a cryptographic

hash function, specifically a one-way compression function.

The methods resemble the block cipher modes of

operation usually used for encryption. Many well-known hash

functions, including MD4, MD5, SHA-1 and SHA-2 are

built from block-cipher-like components designed for the

purpose, with feedback to ensure that the resulting function is

not invertible [2].

A standard block cipher such as AES can be used in place of

these custom block ciphers; that might be useful when

an embedded system needs to implement both encryption and

hashing with minimal code size or hardware area. However,

that approach can have costs in efficiency and security [4].

Slightly simplified versions of the hash functions are

surprisingly weak: whenever symmetric constants and

initialization values are used throughout the computations and

modular additions are replaced by exclusive or operations,

symmetric messages hash to symmetric digests [7]. Therefore

the complexity of collision search on these modified hash

functions potentially becomes as low as one wish[6].A hash

function h which maps a message of any length to strings of

some fixed length is called to be collision free, but such that

finding x,y with h(z)=h(y) is a hard problem. The need for

such functions to ensure data integrity and for digital

signatures is well known [8].

The RIPEMD is an acronym for RACE Integrity Primitives

Evaluation Message Digest. This set of hash functions was

designed by open research community and generally known

as a family of European hash functions. The set includes

RIPEMD, RIPEMD-128, and RIPEMD-160. There also exist

256, and 320-bit versions of this algorithm. Original

RIPEMD (128 bit) is based upon the design principles used in

MD4 and found to provide questionable security [9].

There had been a lot of tweaks and variants in the MD and the

SHA series mostly by increasing the length of the message

digest. There are approaches to find collisions in MD5 and

break other hash functions like RIPEMD, HAVAL, MD4 and

SHA-0 by using differential attacks. This has led to the recent

development of many other cryptography hash functions,

Simple Hash Function Using Stack with Page

Replacement Principle

Sivakumar.T, Sowmya .P, Utharaa.S

https://simple.wikipedia.org/wiki/Cryptography
https://simple.wikipedia.org/wiki/Hash_function
https://simple.wikipedia.org/wiki/Data_integrity
https://simple.wikipedia.org/wiki/Data_integrity
https://simple.wikipedia.org/wiki/Digital_signature
https://simple.wikipedia.org/wiki/Authentication
https://simple.wikipedia.org/wiki/Information_security
https://simple.wikipedia.org/w/index.php?title=String_%28computer_science%29&action=edit&redlink=1
https://simple.wikipedia.org/w/index.php?title=Random_function&action=edit&redlink=1
https://simple.wikipedia.org/wiki/Deterministic_algorithm
https://simple.wikipedia.org/w/index.php?title=Hash_collision&action=edit&redlink=1
https://simple.wikipedia.org/w/index.php?title=Adversary_%28cryptography%29&action=edit&redlink=1
https://en.wikipedia.org/wiki/Block_cipher
https://en.wikipedia.org/wiki/One-way_compression_function
https://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
https://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
https://en.wikipedia.org/wiki/MD4
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Embedded_system

Simple Hash Function Using Stack with Page Replacement Principle

 74 www.ijeas.org

each having its own strengths and weaknesses, aiming to be

the ―one‖ which is secure against birthday attacks, cube

testers, differential cryptanalysis and several other attacks

[10].

In this paper, a new and simple hash function using the

concept of stack and page replacement algorithm is proposed.

III. PROPOSED HASH FUNCTION

In this section, the working model of the proposed hash

function is described with a flowchart. In the proposed hash

function, the stack data structure is used for permutation,

which shuffles the characters in the input data. The character

occurrence is also taken into account to avoid collision. The

size of stack is maintained as ‗n‘ and the elements are added

based on stack operation principle. Value of ‗n‘ is the user

choice and this denotes the size of the final hash code

generated by the proposed method.

A character is read from the input data, its occurrence is

checked in the count array and if it occurs for the first time

then it is inserted into the stack. If it has already occurred, then

its occurrence value is XORed with all values already present

in the stack. This is the principle of page replacement

algorithm where we will not replace a page which is already

available in frame. The process is repeated for entire message.

The final hash code is the value in the entire stack. The

working model of the proposed hash function is shown in Fig

1.

Fig.1. Flow Diagram of Proposed Hash Function

A. Illustration of Proposed Hash Function

Let the input message be ―meet me after toga party‖.

Compute the occurrence array as shown in Fig 2

 a b c d e f g

 h i j k l m n

 o p q r s t u

 v w x y z

Fig. 2. Occurrence Array

Input the frame size and start inserting the characters of the

message inside the stack. For implementation the ASCII value

of the input message is used. Insert ‗m‘ and ‗e‘ first. Then

insert ‗e‘. Since ‗e‘ already exist, XOR its count value with all

the elements in the stack. Next insert the character ‗t‘.

Fig.3.Stack after inserting the characters m,e,e,t

‗m‘ already exists XOR its count value with all the elements

of the stack as shown in Fig 4.Next insert the character ‗e‘ and

XOR the contents of the stack with its count value. Next,

insert the character ‗a‘.

Fig. 4.Stack after inserting the characters m,e,a

Insert the next character ‗f‘. As ‗t‘ already exists XOR its

count value with all the elements of the stackas shown in Fig

5.Next insert the character ‗e‘ and XOR the contents of the

stack with its count value.

Fig.5.Stack after inserting the characters f,t,e

 3 0 0 4 1 1 0

 0 0 0 0 0 2 0

 1 1 0 2 0 4 0

 0 0 0 1 0

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-4, Issue-3, March 2017

 75 www.ijeas.org

Insert the next character ‗r‘. As ‗t‘ already exists XOR its

count value with all the elements of the stack as shown in Fig

6.Next insert the character ‗o‘.

Fig.6.Stack after inserting the characters r,t,o

Insert the next character ‗g‘. As ‗a‘ already exists XOR its

count value with all the elements of the stack as shown in Fig

7.Next, insert the character ‗p‘.

Fig.7.Stack after inserting the characters g,a,p

As ‗a‘ already exists XOR its count value with all the elements

of the stack as shown in Fig 8.Next insert the character ‗r‘ and

XOR the contents of the stack with its count value. Then insert

the character ‗t‘. Next insert the last character ‗y‘. Finally read

the contents of the stack to get the hash code. Here the hash

code for the given input message is ―lfvc‖.

Fig.8.Stack after inserting the characters a,r,t,y

B. Algorithm

Input: message and the hash code size, Output: hash code.

Step 1: Start

Step 2: Input the message to which the hash code is to be

computed.

Step 3: Create and initialize the occurrence array.

Step 4: Input the hash code size.

Step 5: Create a stack based on the required hash code size.

Step 6: Read character from input message and use its ASCII

value.

Step7: Occurrence of each character is maintained in

occurrence array by incrementing count value.

Step 8: Push the character into the stack if its occurrence value

is 1. (i.e., it is not in frame).

Step 9: If the count value of the character is > 1, then XOR all

the existing characters in the stack with the occurrence value.

Step 10: Repeat the steps 6 to 9 until the entire message is

processed.

Step 11: Read the value from the entire stack to get the hash

code of the given message.

Step 10: Store the hash code and stop the process.

C. Advantages of Proposed Hash Function

a. This hash function can be used in simple mail

applications.

b. It can also be used in our computers to store password.

c. The proposed hash function can also be used in SMS

applications.

d. Variable sized hash code can be generated as per user

requirement.

IV. EXPERIMENTAL RESULTS

The proposed method is experimented using C++ language

and the system configuration is Processor Intel i5-5200U

CPU, Clock speed 2.2 GHz, RAM 4GB and the operating

system is Windows. The obtained result of proposed method

by using various input messages is given in Table 1.

Table – 1Experimental Result

Frame

Size
Message

Hash

Code

Hash Code

(in Hex)

4 Meetmeaftertogaparty Lfvc 4c667663

8 Meetmeaftertogaparty Lfvcbuhb
4c667663627

56862

4 Meetmeintogaparty j‘pd 6a927064

4 Indiaisindependent inf‘ 696e6692

The obtained hash code varies based with respect to the input

message and the number of frames. Currently, the proposed

model is tested with character messages forexperimental

purpose. This can be extended to numerical and special

characters.

V. CONCLUSION

In this paper, a new hash function is developed using stack

and the principle of page replacement. This kind of hash

function can be used for hashing small file, SMS and e-mail

messages. The proposed hash function gives different hash

values for inputs even with the minor difference. It is also

possible to change the frame size based upon the required

length of the hash code. This work can be further extended to

test the properties of the hash function. In future, the proposed

method is validated based on the requirements of hash

functions.

Simple Hash Function Using Stack with Page Replacement Principle

 76 www.ijeas.org

REFERENCES

[1] William Stallings, ―Cryptography and Network Security-Principles

and Practice‖, Pearson Education, New Delhi,2013.

[2] Priyanka Vadhera and Bhumika Lall, ―Review Paper on Secure

Hashing Algorithm and Its Variants‖, International Journal of Science

and Research, Volume 3 , Issue 6, June 2014.

[3] Rajeev Sobti and G.Geetha, ―Cryptographic Hash Functions: A

Review‖, International Journal of Computer Science Issues, Vol. 9,

Issue 2, March 2012.

[4] I.Haitner, D.Harnik, and O.Reingold, "Efficient Pseudorandom

Generators from Exponentially Hard OneWay Functions", in ICALP

(2), 2006, pp.228-239.

[5] P.Gauravram, ―Cryptographic Hash Functions: Cryptanalysis, design

and Applications‖, Ph.D. Thesis, Faculty of Information Technology,

Queensland University of Technology, Brisbane, Australia, 2003.

[6] Henry Gilbert, Helena Handschuh, ‖Security analysis of SHA-256 and

Sisters‖,Lecture Notes in Computer Science 3006:175-19, 2003.

[7] P.Rogaway, and T.Shrimpton, ―Cryptographic HashFunction Basics:

Definitions, implications and separations for preimage resistance,

second preimage resistance, and collision resistance‖,in Fast Software

Encryption, 2004, pp.371-388.

[8] I.Damgard, ―A Design Principle for Hash Functions", Advances in

Cryptology — CRYPTO‘ 89 Proceedings, 1989, pp.416-427.

[9] X.Wang, X.Lai, D.Feng, H.Chen and X.Yu, ―Cryptanalysis of the

Hash Functions MD4 and RIPEMD‖,In: Cramer R. (eds) Advances in

Cryptology – EUROCRYPT 2005, pp.1-18.

[10] C.P.Schnorr, ―An efficient Cryptographic Hash Functions‖, Advances

in Cryptology — CRYPTO‘ 91 Proceedings, 1991.

Dr.T.Sivakumar is currently working as an Assistant

Professor SG) in the Department of Information Technology, PSG College of

Technology, Coimbatore-641004, India. His research interests include data

& network security and cryptography.

 Ms.Sowmya P is the final year students of B.Tech-I T, in

the Department of Information Technology, PSG College of Technology,

Coimbatore-641004, India

Ms.Utharaa S is the final year students of B.Tech-I T, in

the Department of Information Technology, PSG College of Technology,

Coimbatore-641004, India

https://www.researchgate.net/journal/0302-9743_Lecture_Notes_in_Computer_Science

