Zeros of Polynomials

M. H. Gulzar

Abstract — In this paper we find bounds for the number of zeros of a polynomial with certain conditions on its coefficients. The results thus obtained generalize many results known already.

Mathematics Subject Classification (2010): 30C10, 30C15.

Index Terms — Bound, Coefficient, Polynomial, Zeros.

I. INTRODUCTION

Cauchy found a bound for all the zeros of a polynomial and proved the following result known as Cauchy’s Theorem [1, 3]:

Theorem A. All the zeros of the polynomial

\[P(z) = \sum_{j=0}^{n} a_j z^j \]

of degree n lie in the circle \(|z| < 1 + M \),

where \(M = \max_{0 \leq j \leq n-1} \left| \frac{a_j}{a_n} \right| \).

The bound given by the above theorem depends on all the coefficients of the polynomial. A lot of such results is available in the literature [1–4]. In this connection Shah and Liman [4] proved the following results:

Theorem B. If \(P(z) = \sum_{j=0}^{n} a_j z^j \) is a complex polynomial satisfying

\[\sum_{j=1}^{n} |a_j| < |a_0|, \]

then \(P(z) \) does not vanish in \(|z| < 1 \).

Theorem C. If \(P(z) = \sum_{j=0}^{n} a_j z^j \) is a complex polynomial satisfying

\[\sum_{j=0}^{n-1} |a_j| < |a_n|, \]

then \(P(z) \) has all its zeros in \(|z| < 1 \).

Mezerji and Bidkham [2] generalized Theorems B and C by proving

Theorem D. Let \(P(z) = a_0 + \sum_{i=\mu}^{n} a_i z^i \) be a complex polynomial of degree n. If for some \(R \geq 1 \),

\[R^{-\mu} \sum_{j=0, \mu \leq p \neq k}^{n} |a_j| < |a_k|, \]

where \(A = \{ 1, 2, \ldots, \mu - 1 \} \), then \(P(z) \) has exactly \(\mu \) zeros in \(|z| < R \).

II. MAIN RESULTS

In this paper we prove the following result:

Theorem 1. Let

\[P(z) = a_0 + a_1 z + a_2 z^2 + \ldots + a_p z^p + a_n z^n, 1 \leq p \leq n - 1 \]

be a complex polynomial of degree n. If for some \(R \geq 1 \),

\[R^{n-p} \sum_{j=0, j \neq p}^{n} |a_j| < |a_p|, \]

then \(P(z) \) has exactly \(p \) zeros in \(|z| < R \).

Remark 1. For \(p=n-1 \) and \(p=n \), Theorem 1 reduces to Theorem C.

For \(p=1 \), \(R=1 \), Theorem 1 reduces to the following result:

Corollary 1. Let \(P(z) = a_0 + a_1 z + a_n z^n \) such that

\[|a_0| + |a_n| < |a_1| \].

Then \(P(z) \) has exactly 1 zero in \(|z| < 1 \).

For \(p=n-1 \), we get the following result from Theorem 1:

Corollary 2. Let \(P(z) = a_0 + a_1 z + a_2 z^2 + \ldots + a_{n-1} z^{n-1} + a_n z^n \) be a complex polynomial of degree n. If for some \(R \geq 1 \),

\[R \sum_{j=0, j \neq n-1}^{n} |a_j| < |a_{n-1}|, \]

then \(P(z) \) has exactly \(n-1 \) zeros in \(|z| < R \).

For \(R=1 \), Cor. 2 gives the following result:

Corollary 3. Let

\[P(z) = a_0 + a_1 z + a_2 z^2 + \ldots + a_{n-1} z^{n-1} + a_n z^n \]

be a complex polynomial of degree n. If

\[\sum_{j=0, j \neq n-1}^{n} |a_j| < |a_{n-1}|, \]

then \(P(z) \) has exactly \(n-1 \) zeros in \(|z| < 1 \).

III. PROOF OF THEOREM I

Let

\[g(z) = \frac{1}{a_p} \sum_{j=0, j \neq p}^{n} a_j z^j. \]

Then for \(|z| = R \), \(R \geq 1 \),

\[|g(z)| \leq \frac{1}{|a_p|} \sum_{j=0, j \neq p}^{n} |a_j| |z|^j \].

M. H. Gulzar, Post Graduate Department of Mathematics, University of Kashmir, Srinagar J&K, India 190006

www.ijeas.org
Zeros of Polynomials

\[\frac{1}{|a_p|} \sum_{j=0, j \neq p}^{n} |a_j| R^j \]
\[\leq \frac{1}{|a_p|} R^n \sum_{j=0, j \neq p}^{n} |a_j| \]
\[\leq R^p \]
\[= |z|^p \]
\[= |z|^p \]

Hence, by Rouche’s Theorem \(z^p \) and \(g(z) + \)
\[z^p = \frac{P(z)}{a_p} \] have the same number of zeros in \(|z| < R \).

Since \(z^p \) has \(p \) zeros there, it follows that \(P(z) \) has exactly \(p \) zeros in \(|z| < R \). That proves the result.

REFERENCES