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 

Abstract— The influence of neutron irradiation upon 

(nonlinear physical) elastoplastic deformation of components of 

constructions under cyclic force disturbance is considered. As an 

example the problem of cyclic irradiation-force winding 

consider  unsymmetrical with respect to thickness sandwich 

beam with external bearing layers made of metal and 

incompressible with respect to thickness internal layer (filler) 

made of polymer. Well effects resulting in appearance of 

additional volume deformation. Furthermore the differences 

used during the numerical solving reflects of the nature of  the 

physical structure of body under influence the flux. On basis of 

experimental data the formula of irradiation reinforcement is 

suggested. The result may be extended in case of any given 

n-cyclic loading  The theorem about variable loading is proved. 

Theorem about cyclic loadings of elastoplastic body in neutron 

flux allows to simplify essentially a whole class of boundary 

problems. Numerical solving for sandwich nonlinearly beam is 

adduced. 

 
Index Terms— irradiation-force,  neutron flux,  numerical 

solving, , variable loading. 

 

I. INTRODUCTION 

  Radiation treatment of rigid body is conducted by 

numerous effects resulting in appearance of additional 

volume deformation, changing of elastic and especially 

plastic properties of substance. Therefore it is necessary to 

bring in appropriate corrections into posing and solving of 

boundary-value problems concerning single and cyclic 

loading of elastoplastic components of constructions. The 

main factors are irradiation reinforcement of substance 

(increasing of yield point) and irradiation swelling (increasing 

of volume deformation). Below an attempt to extend the 

theory of variable loading by Moskvitin [1] upon discussed 

class of boundary-value problems. 

 

II. PROCEDURE OF METHODS OF SOLUTION. 

A. Volume Deformation and Irradiation Reinforcement  

Let’s consider initially homogeneous isotropic body, 

occupying half-space .0z  If upon the border ( 0z ) 

parallel to the axe z are felling neutrons with identical 

average energy and intention 0 , the intention of neutrons, 

reaching the plain constz  , will be [2], [3] 
zez  -

0)( . 

The value   is called macroscopic effective section and has 

valuation of 1/m. 
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If 0  is not dependent upon time, up to the instance t  

through the section z will pass the flow  
ztezI  -

0)( . (1) 

In rough estimation we may consider, that changing of the 

volume of substance is directly proportional to the flux )(zI , 

and consequently )(zBII  , where B  is experimental 

constant. The value tI 00   will give total flux of neutrons 

upon unit of area of the surface of the body. In reactors 0  

has the value of 10
17

-10
18

 neutrons/(m
2
 s), at that 0I can 

reach the value of 10
23

–10
27

 neutron /m
2
, and I  approaching 

to value 0.1. Consequently, depending upon of energy of 

neutrons and properties of irradiated substance B can has the 

value of 10
-28

–10
-24

 m
2
/neutron. 

Dependence of the modulus of elasticity, yield and solidity 

points and whole tension diagram upon 0I   for different 

energies was experimentally investigated after irradiating of 

samples in nuclear reactors. Results of experiments show that 

as usual the modulus of elasticity changes weakly (increase by 

1.5-5 % relatively not irradiated sample). As for yield and 

solidity points – they are very sensitive to the irradiating and 

the yield point especially. 

For massive bodies with flat boundary the number of 

neutrons passing at the depth z under this boundary is 

estimated by the formula (1), that's why the yield point will 

vary along z . At the surface of the body ( 0z ) the 

influence of irradiation upon the plastic limit y  is 

satisfactory characterised by the formula of irradiation 

reinforcement [2]: 

   21

00 exp11σσ ξIAyy  . (2) 

Here 0y  - the plastic limit of not irradiated substance. At 

the depth z  the formula takes the form 

   21
0 exp11σσ ξIAyy  , 

where the value of neutron flow )(zI is characterised by 

formula (1). Let's denote appropriate values of deformation as  

 ,,,0 Asy – are substance constants, taken from 

experiment. For example, if for aluminium alloy we accept 

09.1A , 
261073.9   m

2
/neutron, then the fig.1 

indicates the satisfaction with known experimental data. Dark 

points – experimental data, solid line – the estimation 

by formula (2). 
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Fig. 1 experimental data, where  dark points – experimental 

data, solid line – the estimation by formula (2)  

 

B. Statement of problems of the theory of small-scale 

elastoplastic deformations 

Let’s consider the process of complex influence of external 

force and radiation loading upon deformable body within the 

theory of small-scale elastoplastic deformations. Suppose, 

that the body in natural state is influenced simultaneously by 

instant external forces  ii RF  ,  with boundary moving iou  

and neutron flow with the value tI 0 . It is supposed, that 

under such influence areas of elastic and plastic deformations 

appear in the body. Let’s neglect the changing of modulus of 

elasticity caused by the neutron irradiation. Arising within the 

body stresses deformations and moving will be marked by one 

upper dash. 

In elastic areas of solid body Hooke's law is valid and 

known equations, connecting deviators of stress and 

deformation ijij эs  , and also their spherical components 

ε,σ  , are fulfilled ijij эGs  2 , )-ε3(σ BIK  , 

with the correction due to additional volume deformation, 

caused by neutron irradiation BI. Here G  denotes shear 

modulus, K  – volumetric deformation modulus. 

For those areas of solid body, where plastic deformations 

appeared the relation between deviators for simple loading 

can be represented as  kuijij аIfэGs  ,,ε2 . 

Here  ku аIf  ,,ε – the plasticity function, depending upon 

deformation intensity u  , the value of neutron flow I and 

approximated parameters ua . In the conditions of simple (by 

A. A. Iluyshin) loading [1] this function will be universal, i. e. 

it can be find from experiments with extension, torsion etc.  

So in the deformable body the relation between stresses and 

deformations under active loading from natural state and 

under influence of neutron flow in general case can be 

represented as 

 

)3(

,,,ε2

IBK

аIfэGs kuijij






 

(3) 

At that the plasticity function should be taken as 

  1,,ε 
ku аIf  in those areas, where su    , s   – 

deformation, corresponding to the  plastic limit at the start 

time. 

If the force loading is rather quick (instantaneous) the 

irradiation reinforcement will not occur and originated areas 

of plastic deformations will be the same as in conditions 

without influence of neutron flow. Though if the active 

loading will be slow enough, external layers of the body will 

turn out to be reinforced and within these layers areas of 

plastic deformations will turn out to be smaller or will be 

missed at all, compared with the not irradiated body. There 

can take a  place an effect when first plastic deformations will 

appear not on external reinforced surface, but under it, where 

the deformation intensity is great and plastic limit didn’t 

increased. 

So the influence of irradiation upon elastoplastic body is 

contrariwise to thermal, which decreases the plastic limit and 

results in increasing of areas of plastic deformations under 

equal loading.  

Let’s add to the relations in (3) differential equations and 

boundary conditions and also Cauchy proportions on the 

assumption of infinitesimal deformations 

ijjiijuii

ijijijij

uuSonuu

SonRlF

,,0 2;

,;0,σ







 

 

(4) 

Comma in inferior index depicts the differentiation along 

next coordinate. Consider, that time variation of external 

loading and boundary moving occur in such a way, that 

appropriate loading trajectories are not related to the class of 

essentially complex loadings, and irradiation reinforcement 

takes place after force deformation of solid body. Hereinafter 

we shall suppose, that boundary problem (3) and (4) is solved. 

C. Problem definition for repeated alternating-sign 

loading 

Suppose that since 1tt  the influence of neutron flow 

disappears ( 0 ), and external forces change so that in all 

points of plastically deformable areas of the body pV  takes 

place the unloading and following alternating-sign loading by 

volumetric iF   and surface iR  forces (at S ) with 

boundary moving oiu   (at uS ). The level of irradiation of the 

body remains constant and is equal to the value before 

unloading 11 tI  . The plastic limit in points of the body 

depends upon coordinate z  and becomes equal )),(( 1 zIs   

i. e. it depends upon the value of deformation and irradiation 

reinforcement. The scheme 

of the process discussed is shown at the fig. 2. 
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Fig. 2 The scheme of the process of the deformation and 

radiation hardening 
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Let’s depict appropriate stresses, deformations and moving 

as iijij u  ,, . Formula  (4) is valid for these values  

ijjiijuii

ijijijij

uuSonuu

SonRlF

,,0 2;

,;0,σ







 

 

(5) 

Relation between stresses and deformations will be n 

curve of the second cycle. 

ijij эGs  2  ku аIf  ,,ε,ε 11 , ε3σ  K . (6) 

Here  ku аIf  ,,ε 1 – plasticity function under repeated 

alternating-sign loading, depending upon the deformation 

intensity u   , preceding values of deformation intensity 1  

and the level of irradiation of the body 1I , approximated 

parameters ka  , describing the deformation. 

At that plasticity function f   is supposed to be equal 1 in 

those areas, where new plastic deformations didn’t appear, i. 

e. yu    modulo, y   – deformation, corresponding to the 

plastic limit y    under repeated loading.  

Equations (5) and (6) define a boundary problem for values 

with two dashes. Complexity of the problem consists in the 

dependence of desired decision upon the unloading points 

( 11 ,  ), as the boundary problem must be defined and 

solved at every point the solid body. Let’s discuss one of 

methods to avoid such difficulties. 

For the values before the beginning of the unloading we 

shall retain designations iijij u ,, . Following Moskvitin 

[1] we shall define the following differences for moment 

1tt  : 

 

ijijij sss * , ijijij эээ *
 

(7) 

Let’s depict physical state equations for values with 

asterisks. In zones eV   and eV   of unloading and elastic 

deformation are valid relations: 

 
*
ij

*
ij Gэs 2 , )( 1

** Iyu  , 

in the area pV  , where during variable loading the plastic 

deformation changes, must be valid relations: 

 
*
ij

*
ij Gэs 2 )11(

* ,,ε,ε *
k

*
u aIf  . (8) 

Here )
*

11
*

(
* ,,ε,ε ku aIf  , in general said, appears some new 

universal function, depicting nonlinearly of deformation 

diagram in axes 
* ~ 

*  (see the fig. 2). On the linear 

section 0* f .  

 

In all points of the body the volumetric deformation 

remains elastic. Consequently before the beginning of 

unloading and for current state equalities are valid 

)-ε3(σ 1BIK  , )-ε3(σ BIK  , that’s why for values 

with asterisks, 

 
** 3  K . (9) 

Equilibrium equations, boundary conditions and Cauchy 

proportions for values 
*** ,, iijij u   will be  

.2;,

;,,

,0σ

*

,

*

,

*

00

*

0

*

*|**|

*
,

*

ijjiijuiiii

iiiiiij

iii

*

ijij

uuSonuuuu

SonRRRRl

FFFF













 (10) 

Relations (8)–(10) make a new boundary problem for 

values with asterisks. If we now suppose that the function 
*f  

in all points of deformation curve can be approximated by 

function f  , that is to depict it by the same analytical 

equation but with another parameters 
*
kа , we shall exclude 

the dependence of 
*f  upon 1 : 

 *
1

** ,,ε ku aIff  . 

Comparing after this equation, the formulas  (3) and (4) for 

the body with loading from natural state and equations for 

values with asterisks (8) – (10) we can mark, that they 

coincide with closeness within designations. That’s why the 

solving of the problem for the values with asterisks can be get 

from known solving, of the problem, appropriated to loading 

from natural state by some replacements. For example, if the 

moving ),,,,( ksuii aIxuu   is known, then appropriate 

moving ),,,,( *
1

***
ksuii aIxuu   and under repeated 

alternating-sign loading is calculated from equation (7) 
*
iii uuu  . Stresses and deformations are calculated by 

formulas of the same type. 

III. RESULTS 

Obtained result may be extended in case of any given 

n-cyclic loading (theorem about cyclic loadings of 

elastoplastic bodies in neutron flux). Suppose that under 

n-loading by external forces 
n

i

n

i RF ,  with boundary moving 

n
iu0 , stresses 

n
ijσ , deformations 

n
ij  and moving 

n
iu  appear. 

At the same time equilibrium equations, boundary conditions 

and Cauchy equations must be valid: 

 

.2;

,;0σ

,,0

,

n

ij

n

ji

n

iju

n

i

n

i

n

ij

n

ij

n

i

n

jij

uuSonuu

SonRlF







 

 

(11) 

 

defined  the following differences: 

 

)()1(),σσ()1(σ 11 n
ij

n
ij

n*n
ij

n
ij

n
ij

n*n
ij  





, 

           ).()1( 1 n
i

n
i

n*n
i uuu 

  

Then the equations (11) turns out to be valid for the values 

with asterisks also: 
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(12) 

Let’s accept that under any n-loading the relation between 

sphere components of stresses and deformation tensors 

remains elastic. Repeating the previous supposition about 

possibility of curves ijs  ijэ  and 
*n
ijs  *n

ijэ  by nonlinearly 

functions of identical analytic type 

 *n
k

*n
u

*n
ij

*n
ij aIfGэs ,,ε2 1 , (13) 

we shall conclude that the solving for the problem for values 

with asterisks (12) and (13) under any given n-loading may be 

get from the problem, concerning the loading from the natural 

state. For example, if the moving is known,  

),,ε,ε,( т kuii aIxuu  , then the appropriate value with 

asterisk  will be  ),,ε,ε,( 1т
*n
k

*n*n
ui

*n
i aIxuu  .  

After this the desired moving 
n
iu  can be calculated from 

equation 





n

k

k
i

k
i

n
i uuu

2

*)1( . (14) 

Stresses and deformations are calculated by formulas of the 

same type (14). 

As an example the problem of cyclic irradiation-force 

winding of sandwich beam with one embed end (fig. 3). 

Unsymmetrical with respect to thickness sandwich beam with 

external bearing layers made of metal and incompressible 

with respect to thickness internal layer (filler) made of 

polymer is considered. For the description of the pack 

kinematics the hypothesis of broken normal line is accepted: 

in bearing layers Kirhgoff hypothesis is valid, in the filler 

normal line remains rectilinear without changing the length, 

but it turns on some additional angle )(x . Bearing layers 

are accepted to be elastoplastic, the filler – elastic. Analytical 

solution of appropriate problem of theory of elasticity is 

depicted in [3]. Solving of the problem of small elastoplastic 

deformations under loading from natural state was found by 

method of elastic decisions. Aluminium alloy was used as a 

bearing layer, and Teflon was used as filler.  
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Fig. 3 cyclic irradiation-force winding of sandwich beam with 

one embed end 

 

The solution of this problem for the theory of elasticity is 

known [4]-[ 6]:  
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Here   
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Where n is approximation number; 
1n-p , 

1n-h , 
1n-q  are 

called «additional» external stresses, assumed to be zero at the 

first step and are further calculated from the results of 

preceding approximation. For this aim, the formulas similar to 

(16) are used in which all summands have a superscript «n 

–1»: 
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Coefficients 321
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321 ,,,,,,   and linearly 

integrates operators 1
4

1
3

1
2 ,,  LLL  are determinates in [4]-[6]. 

Under the boundary conditions for edge-fixing of the plate, 

we obtain the following recurrent formulas for the integration 
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Under the boundary conditions for edge-fixing of the plate, 

we obtain the following recurrent formulas for integration 

constants: 
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Appropriate mechanical properties of mediums are 

depicted in [2]. On figures (4) and (5) shear   and flexure 

w  of sandwich beam, calculated with the help of different 

physical state equations, are shown. Curves with one dash 

corresponds to loading from natural state, with two dashes – 

repeated cyclic winding due to alternating-sign loading: 1' – 

solving of elastic problem: 2'– instant elastoplastic without 

irradiation; 3'– elastoplastic winding of previously irradiated 

beam (I1=5*10
24

 м
–2

). 
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Fig. 4  shear    of sandwich beam 
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Fig. 5  flexure w  of sandwich beam 
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Under combined influence of force loading and neutron 

flow during interval 1t  till the value 1I  deformation will 

correspond to the curve 2'. Consequent instant unloading and 

force alternating-sign loading with level of irradiation 1I  will 

cause the shear and flexure of the beam, shown by curves 2". 

If the beam under cyclic loading was irradiated beforehand, 

then deformation would correspond to the curve 3". 

 

IV. CONCLUSION 
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