Effect of different AM Fungi inoculation on growth, biomass, yield enhancement and nutrient uptake in cultivar Sankeshwar of Capsicum annuum L

Jyoti Puttaradder, H. C. Lakshman

Abstract—The selection of AM fungi is required to characterize the native AM fungi population from the soil types. The recent studies have clearly reported that these fungi are host preference in enhancing the growth, yield and nutrient. In the present study six indigenous AM fungi were selected from chillies growing fields of Haveri. These six AM fungi were inoculated to cultivar Sankeshwar of Capsicum annuum L. at greenhouse conditions. Plants harvested at 60 and 90 days after inoculation. The results obtained from the experiments were clearly evidence that the positive influence of Glomus macrocarpum Tulasne & Tulasne, on cultivar Sankeshwar of Capsicum annuum L. plants in increasing plant height, root length, fresh weight of shoot and fresh weight of root, % root colonization, spore number and P uptake in shoot and root. Similarly the improvement of number of fruits was higher. The second AM fungus Rhizophagus fasciculatus (Thaxt.) Walker & Schüßler was influenced in all the different parameters it is followed by Glomus mosseae respectively. And thus an indigenous AM fungi play an important role over the control plants or non inoculated plants. This is mainly due to AM fungal species differ considerably in their efficiency to colonize and influenced plant growth biomass yield and nutrient uptake.

Index Terms— Indigenous AM fungi, Capsicum annuum L., Glomus macrocarpum, Rhizophagus fasciculatus, Glomus mosseae, per cent root colonization, plant biomass, spore number, Haveri.

I. INTRODUCTION

Arbuscular mycorrhizal fungi (AMF) are obligate biotrophic organisms belonging to Glomeromycota that live symbiotically with the roots of plants. The nutrient deficient soils usually harbor more AMF [1]. Hence, their ecological significance is enormous. AMF play an important role in plant nutrition and soil nutrition [2], [3]. Nearly 90% of land plant species harbor AMF. AMF associations were also found in aquatic habitats [4]. AMF help in plant nutrition and disease resistance and also provide an alternative to chemical fertilizers particularly in land reclamation, habitat restoration and sustainable agriculture. Microorganisms have been found to solubilize the low soluble calcium phosphate via the production of exo-metabolites (Phosphatase) and make them available to plants [5]. Alkaline Phosphatase (ALP) has long been suspected of being involved in phosphate efflux from arbuscules because of strong ALP activities at arbuscules [6], [7]. Arbuscular mycorrhizal fungi (AMF) are important in mobilizing phosphorus (P) nutrition in many soils through hyphal transport to the plant [8]. Nutrition exchange between the two symbionts is at the core of the arbuscular mycorrhizal (AM) association and reciprocal transfer is a requirement for a functioning symbiosis [9]. The first model to quantify the contribution of the external fungal mycelium to plant P uptake was developed by [10]. The current day emphasis is on sustainable agriculture, which uses less of chemical inputs like fertilizers and pesticides having adverse effect on soil health, fertility and environment. Thus use of microbial inoculants play an important role in sustainable agriculture [11], [12]. Arbuscular mycorrhizal fungi are known to improve the nutritional status, growth and development of plants, protect plants against root pathogens and offer resistance to drought and salinity [13]. Though these fungi are not host specific, recent studies have clearly brought out host preference in arbuscular mycorrhizal fungi. Host preference has been reported in many plants like Casuarina euisetifolia [14]; Tectona grandis [15]; Garcinia indica [16], and a few medicinal plant species like Phyllanthus amarus and Withania somnifera [17] and Coleus forskohlii [18].

Capsicum annuum L. is one of the important pepper plants widely cultivated all over the world. It is the most popular condiment being used to add zest and flavor, a large green, non-pungent forms, and eaten raw salads. It yields “paprika” which is used as flavoring and coloring material in cookery. Commercially large quantities of paprika are used in the manufacture of sausages and other meat products. Cultivar Sankeshwar of Capsicum annuum L. is an important agricultural crop, not only because of its economic importance, but also due to nutritional and medicinal value of its fruits. Capsicum annuum L. are the excellent source of natural colors and antioxidant compounds [19]. A wide spectrum of antioxidant vitamins, carotenoids, capsaicinoids and phenolic compounds are present in hot pepper fruits. The intake of these compounds in food is an important health-protecting factor by prevention of widespread human diseases. As consumption continues to increase, hot peppers could provide important amounts of nutritional antioxidants to the human diet. Screening of efficient AM fungi for this plant was not investigated. Therefore, the purpose of this study was to select a suitable AM strain for its improvement of growth biomass yield and Phosphorus uptake in mycorrhizae inoculated and non inoculated plants.

II. MATERIALS AND METHODS:

Collection, Surface Sterilization of Seeds and preparation of seedlings: Cultivar Sankeshwar of Capsicum annuum L. was procured from Horticulture Research Station, Haveri (Devihosur) – 581110 (University of Horticultural Sciences, Bagalkot India). The study area of its geographical location lying in
between 15° 30’ and 15° 50’ north latitude and 75° 07’ and 75° 38’ east longitude. Cultivar Sankeshwar of *Capsicum annuum* L. seeds were thoroughly washed under running water and then with distilled water. *Capsicum* seeds were placed in 0.4% mercuric chloride (HgCl₂) solution for 1-2 minutes then washed for 3-4 times in sterile distilled water to ensure the surface sterilization and complete removal of HgCl₂ before sowing the seeds. Surface sterilized seeds were placed in measuring 25 × 50 cm (Lengthx Breadth) diameter broad pots having 8 kg sterilized soil containing sand: soil (1:1/v/v), to get seedlings about 10 to 15 cm in height, equal height seedlings were selected and they were transplanted in to the experimental pots.

AM fungal Inoculum, Recovery and Estimation of Mycorrhizal Spores:

The AM fungal spores were recovered from the rhizospheric soils collected from different areas where the cultivar Sankeshwar of *Capsicum annuum* L. is growing in Haveri district of North Karnataka by adapting wet sieving and decanting technique [20]. AM fungal spore number in the soil suspension was determined by using the procedure as described by [21]. The most dominant species such as *Acaulospora leavis*, *Gigaspora margarita*, *Glomus macrocarpum*, *Glomus mossae*, *Rhizophagus fasciculatus*, and *Sclerocystis dussii*, were selected for the experiments. Then these six AM fungal species were mass multiplied by using most suitable host *Sorghum vulgare* Pers., using sterilized soil and sand mixture (3:1 v/v), under greenhouse conditions.

Experimental Design:

The soil used in the study has pH – 7.5±0, EC – 0.32 dS-1/m, organic carbon –0.4%, and available macronutrients like N=182 kg/ha, P₂O₅= 47.90 kg/ha, K₂O=180 kg/ha with micronutrients like Ca=18.00 mg/100g soil, Mg= 7.8 mg/100g soil, Fe= 6.57 mg/kg, Zn= 6.40 mg/kg, Mn= 5.15 mg/kg, Cu= 0.10 mg/kg. The mixture of mycorrhizae colonized *Sorghum* root bits and soil containing mycelia and spores (158-189 spores/10 g soil) was served as inoculum. Experimental pots measuring 25 × 30 cm (Lengthx Breadth) diameter having 4 kg sterilized soil were watered on every alternate day and provided Hoagland’s nutrient solution without P to each experimental pot at every fortnight. P was provided Hoagland’s nutrient solution without P to each experimental pot. The experiment was conducted in a complete randomized design (CRD) with the treatments as follows:

T1: Soil without fungal inoculum (Control or Non – Mycorrhizal)

T2: Soil with AM Fungus *Acaulospora laevis* Ger d & Trappe.

T3: Soil with AM Fungus *Gigaspora margarita* Becker and Hall.

T4: Soil with AM Fungus *Glomus macrocarpum* Tulasne & Tulasne.

T5: Soil with AM Fungus *Glomus mossaeae* (Nicolson &Gerdemann) Gerdemann & Trappe.

T7: Soil with AM Fungus *Sclerocystis dussii* (Pat.) Höhn.

Harvest and Analysis of Growth parameters:

At 60 and 90 days after transplanting (DAT), plants were harvested to record the total plant biomass (dry weight of shoot and root) and plant height. Dry weight of root and shoot was determined after constant drying at 70°C for 48 hrs under hot air oven. All the growth parameters were measured in triplicate. Phosphorus content in shoot was determined calorimetrically by the vanadomolybdate/ phosphoric-yellow colour method outlined by [22]. Nitrogen content of shoot was determined by Microkjeldahl method [22]. For the fruit analysis we harvest the Fruits at 90 days after sowing.

Root Colonization: The per cent root colonization was evaluated microscopically followed by clearing of roots in 10% KOH and staining with 0.05% trypan blue in lactophenol according to method described by [23]. The following formula was used to calculate the root colonization according to [24].

\[
\text{Per cent mycorrhizal colonization (PMC)} = \frac{\text{Number of root bits colonized}}{\text{Number of total segments examined}} \times 100
\]

Statistical analysis: All the data were analyzed according to analysis of variance (ANOVA) by using the SPSS-16 software. Within each variable, significant difference among the means were assessed with the Duncan’s multiple Range Test (DMRT) (P=0.05).

III. RESULTS:

In the present study, Six different indigenous AM fungal species namely, *Acaulospora laevis*, *Gigaspora margarita*, *Glomus macrocarpum*, *Glomus mossaeae*, *Rhizophagus fasciculatus*, and *Sclerocystis dussii*, were used to screen the efficient AM fungus to improve the plant growth, biomass production and fruit yield of cultivar Sankeshwar of *Capsicum annuum* L. under greenhouse conditions. Results revealed that, the mycorrhizal inoculation influenced significantly increased plant growth, biomass production and fruit yield in cultivar Sankeshwar of *Capsicum annuum* L. compared to non-mycorrhizal plants. It was also noted that, the rate of increased plant growth was varied with each AM fungal species (Fig - 2). Cultivar Sankeshwar of *Capsicum annuum* L. had shown improved plant growth parameters inoculated with six different AM fungi compared to non-mycorrhizal (control) plants. Increased plant growth and biomass production was recorded at both stages of harvest i.e. 60 DAT and 90 DAT. Maximum influence of AM fungal inoculation was observed at 90 DAT compared to 60 DAT. Significantly increased plant height i.e. shoot length (74.23 cm) and root length (34.33 cm), biomass production i.e., shoot dry weight (6.89 g/plant) and root dry weight (3.26 g/plant) was observed with AM fungus *Glomus macrocarpum* inoculation compared to other five AM fungi inoculated and control plants as shown in Table 1 and Fig-1. Results also revealed that, the second best AM fungus for cultivar Sankeshwar of *Capsicum annuum* L. was *Rhizophagus fasciculatus*. Least increased plant heights was observed with AM fungus *Gigaspora margarita* and *Sclerocystis dussii* inoculation, but it was significant over the non-mycorrhizal plants. Greatly improved P-uptake was observed in *Capsicum annuum* L. Var. Sankeshwar shoot inoculated with AM fungus *Glomus macrocarpum* compared to other AM fungi inoculated and non-mycorrhizal ones. Fruit yield was recorded and it was significant with mycorrhizal inoculation compared to non-mycorrhizal ones as shown Table 1.

Similarly, increased mycorrhizal status in cultivar...
Sankeshwar of Capsicum annuum L. root and rhizosphere was observed at all stage of harvest. It was found that, maximum per cent mycorrhizal colonization (PMC) (93.67 %) in root and more mycorrhizal spore number (MSN) (302.00 /50g soil) in the rhizosphere with AM fungus Glomus macrocarpum inoculation compared to other AM fungi inoculated plants and non-mycorrhizal ones. Overall the second best AM fungus to improve cultivar Sankeshwar of Capsicum annuum L. growth and fruit yield was Rhizophagus fasciculatus among the AM fungal species used for inoculation and the inoculations of different AM fungi with respect to harvest period, growth parameters and nutrient uptake are significantly (at 0.01 and 0.05 level) correlate with each other shown in (Table-2).

Table 1: Showing the influence of different AM fungi inoculation on growth, yield, P and N uptake in cultivar Sankeshwar of Capsicum annuum L. at two intervals (i.e. 60 and 90 DAT).

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Shoot</th>
<th>Root</th>
<th>Yield</th>
<th>Mycorrhizal Status</th>
<th>Nutrient Uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Length (cm)</td>
<td>Fresh Weight (g)</td>
<td>Dry Weight (g)</td>
<td>Length (cm)</td>
<td>Fresh Weight (g)</td>
</tr>
<tr>
<td>60 DAYS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*NM</td>
<td>34.63±0.</td>
<td>18a</td>
<td>09.66±0.</td>
<td>32a</td>
<td>1.64±0.</td>
</tr>
<tr>
<td>A. laevis</td>
<td>42.37±0.</td>
<td>07d</td>
<td>12.57±0.</td>
<td>24d</td>
<td>3.03±0.</td>
</tr>
<tr>
<td>G. margarita</td>
<td>38.70±0.</td>
<td>35b</td>
<td>10.68±0.</td>
<td>16b</td>
<td>2.46±0.</td>
</tr>
<tr>
<td>G. macrocarpa</td>
<td>51.63±0.</td>
<td>12g</td>
<td>15.73±0.</td>
<td>12g</td>
<td>4.30±0.</td>
</tr>
<tr>
<td>G. mossae</td>
<td>45.30±0.</td>
<td>06e</td>
<td>13.97±0.</td>
<td>07e</td>
<td>3.32±0.</td>
</tr>
<tr>
<td>R. fasciculatus</td>
<td>47.00±0.</td>
<td>06f</td>
<td>14.73±0.</td>
<td>12f</td>
<td>3.70±0.0</td>
</tr>
<tr>
<td>S. daisii</td>
<td>40.27±0.</td>
<td>09c</td>
<td>11.90±0.</td>
<td>00c</td>
<td>2.87±0.0</td>
</tr>
</tbody>
</table>

90 DAYS															
*NM	45.83±0.	27a	10.36±0.	12a	2.70±0.1	5a	16.36±0.2	0.02a	2.09±0.6	0.00a	4.96±0.0	bNR	bNR	0.09a±0.	1.18±0.
A. laevis	53.84±0.	03d	13.26±0.	13c	3.90±0.0	0c	22.90±0.0	0d	5.20±0.10	0.09d	9.50±0.0	79.33±0.	246.66	0.14a±0.	1.64±0.
G. margarita	49.90±0.	06c	12.16±0.	21b	3.43±0.2	3b	17.43±0.1	0b	4.10±0.06	0.03b	5.86±0.	70.33±0.	213.00	0.14a±0.	1.46±0.
G. macrocarpa	74.23±0.	17g	17.46±0.	20f	6.89±0.0	5f	34.33±0.3	0g	7.93±0.09	0.18f	13.63±0.	94.66±2.	306.66	0.25a±0.	3.10±0.
G. mossae	58.30±0.	35e	14.90±0.	00d	4.40±0.2	0d	23.30±0.3	0c	6.40±0.06	0.05d	2.60±0.0	88.67±1.	293.63	0.19a±0.	2.30±0.
R. fasciculatus	67.56±0.	34f	16.20±0.	00e	5.66±0.1	2e	26.73±0.2	0e	6.92±0.04	0.05d	2.80±0.0	93.67±0.	302.00	0.21a±0.	2.28±0.
S. daisii	48.10±0.	10b	12.46±0.	20b	4.20±0.0	6d	19.56±0.1	0c	4.70±0.10	0.00c	7.83±0.0	77.76±0.	230.66	0.17a±0.	1.27±0.

F-Statistics Values

<table>
<thead>
<tr>
<th>Days (D)</th>
<th>Treatment (T)</th>
<th>Dx T</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15240.2</td>
<td>33</td>
<td>15240.2</td>
<td>17.5**</td>
</tr>
<tr>
<td>2883.81</td>
<td>22</td>
<td>2883.81</td>
<td>17.5**</td>
</tr>
<tr>
<td>330.28*</td>
<td>3.96*</td>
<td>330.28*</td>
<td>3.96*</td>
</tr>
</tbody>
</table>

a - NM- Non Mycorrhizal, **b** - NR- Not Recorded, PMC- Per cent Mycorrhizal Colonization, MSN – Mycorrhizal Spore Number, P- Phosphorus, N- Nitrogen.
Effect of different AM Fungi inoculation on growth, biomass, yield enhancement and nutrient uptake in cultivar Sankeshwar of Capsicum annuum L.

Table 2: Showing the Pearson’s correlation coefficients (r) for plant growth, yield and nutrient status with inoculation of different AM Fungi in cultivar Sankeshwar of Capsicum annuum L.

<table>
<thead>
<tr>
<th>DAYS</th>
<th>TR</th>
<th>SL</th>
<th>SFW</th>
<th>SDW</th>
<th>RL</th>
<th>RFW</th>
<th>RDW</th>
<th>NF/P</th>
<th>PMC</th>
<th>MSN</th>
<th>P</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.664**</td>
<td>0.241</td>
<td>0.546**</td>
<td>0.483**</td>
<td>0.718**</td>
<td>0.802**</td>
<td>0.555**</td>
<td>0.307**</td>
<td>0.360**</td>
<td>0.18</td>
<td>0.271</td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>0.256</td>
<td>0.465**</td>
<td>0.405**</td>
<td>0.259</td>
<td>0.303</td>
<td>0.266</td>
<td>0.297</td>
<td>0.601**</td>
<td>0.582**</td>
<td>0.531**</td>
<td>0.267</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>0.847**</td>
<td>0.959**</td>
<td>0.951**</td>
<td>0.950**</td>
<td>0.922**</td>
<td>0.960**</td>
<td>0.700**</td>
<td>0.736**</td>
<td>0.778**</td>
<td>0.852**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFW</td>
<td>0.895**</td>
<td>0.914**</td>
<td>0.773**</td>
<td>0.705**</td>
<td>0.913**</td>
<td>0.806**</td>
<td>0.801**</td>
<td>0.938**</td>
<td>0.932**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDW</td>
<td></td>
<td>0.964**</td>
<td>0.914**</td>
<td>0.879**</td>
<td>0.948**</td>
<td>0.778**</td>
<td>0.794**</td>
<td>0.867**</td>
<td>0.860**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RL</td>
<td>0.885**</td>
<td>0.841**</td>
<td>0.972**</td>
<td>0.733**</td>
<td>0.745**</td>
<td>0.868**</td>
<td>0.910**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFW</td>
<td></td>
<td>0.981**</td>
<td>0.902**</td>
<td>0.755**</td>
<td>0.798**</td>
<td>0.721**</td>
<td>0.768**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDW</td>
<td></td>
<td>0.873**</td>
<td>0.722**</td>
<td>0.764**</td>
<td>0.654**</td>
<td>0.695**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NF/P</td>
<td>0.732**</td>
<td>0.745**</td>
<td>0.852**</td>
<td>0.907**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMC</td>
<td></td>
<td>0.989**</td>
<td>0.816**</td>
<td>0.688**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSN</td>
<td></td>
<td></td>
<td>0.804**</td>
<td>0.693**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.869**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Correlation is significant at the 0.01 and 0.05 level respectively (2-tailed).

Note: SL: Shoot length, SFW: Shoot Fresh weight, SDW: Shoot dry weight, RL: Root length, RFW: Root fresh weight, RDW: Root dry weight, NF/P: Number of fruit per plant, PMC: Per cent mycorrhizal colonization; MSN: Mycorrhizal spore number, N: Nitrogen, P: Phosphorus, TR-Treatments.

Fig.1: Showing the effect of inoculation of different AM fungi on Dry weight of shoot and root in cultivar Sankeshwar of Capsicum annuum L. at 90 days (DAT).

Fig.2: Showing the effect of inoculation of different AM fungi on height and number of fruits in cultivar Sankeshwar of Capsicum annuum L. at 90 days (DAT).

Note: 1-Control, 2-Gigaspora margarita, 3-Acaulospora leavisi, 4-Glomus mossae, 5- Rhizophagus fasciculatus, 6-Sclerocystis dussii, 7- Glomus macrocarpum

IV. DISCUSSION:

Results obtained from the experiments gave the clear evidence that, the positive influence of mycorrhizal inoculation on cultivar Sankeshwar of Capsicum annuum L. growth responses. The dry weight of both shoot and root (biomass) was more in plants colonized with Glomus macrocarpum and the least with Gigaspora margarita and Sclerocystis dussii. The present experimental findings revealed that, the AM fungi play an important role in enhanced plant growth over the control plants. AM Fungi also provides platform for the growth and development of plants. Arbuscular mycorrhizal fungal species differ considerably in their efficiency to colonize and influence plant growth [25]. Host response also differs with fungal species and with geographic isolate within a species. The extent of response may also be due to changes in efficiency of different endophytes during the growing season [26], to varying uptake or exclusion capabilities of AM fungi for different element or a change in soil environment itself during the season [27]. Arbuscular mycorrhizal (AM) association with plants will increase uptake of mineral nutrients, especially phosphorus in conditions of low ‘P’ availability [28], [29] reduce susceptibility of plants to certain pathogens [30], increase seed production [31] and improve health and vigour of the seedlings [32], [33]. The increased plant growth and biomass accumulation of AM fungi inoculated plants strongly depends on their ability to access minerals from the soil. Therefore, positive effects of tested AM fungi on phosphorus content could be related to the ability of symbiotic fungi to enhance soil phosphorous depletion zones around roots [34], [35], [36]. According to earlier workers [37], [38] enhanced uptake of phosphorous is generally regarded as the most important benefit that, the AM fungi provides to their host plants and...
plant phosphorous status is often the main controlling factor in the plant fungal relationship.

V. CONCLUSION:

It can be concluded from the experimental results that, cultivar Sankeshwar of Capsicum annuum L. inoculated with AM fungi have showed increased plant growth, biomass production and fruit yield. This indicated that, the mycorrhizal fungi offers maximum benefits to the experimental plants under varied conditions. Among the six AM fungal species, Glomus macrocarpum Tulasne & Tulasne. was found to be the most promising AM fungus to enhance the plant growth and yield of cultivar Sankeshwar and Rhizophagus fasciculatus (Thaxt.) Walker & Schüttler. was found to be second best AM fungus. Therefore, application of these kinds of soil inhabiting beneficial microorganisms will be more cost effective and eco-friendly to retain and to enhance the soil fertility and agricultural productivity.

ACKNOWLEDGEMENT:
The first author is thankful to Karnataka University Dharwad, for UGC-UPU (Non-NET) Research Fellowship as financial support and to the P.G. Department of Studies in Botany, Karnataka University, Dharwad (India) for providing necessary facilities.

REFERENCE:

Effect of different AM Fungi inoculation on growth, biomass, yield enhancement and nutrient uptake in cultivar Sankeshwar of Capsicum annuum L

Smt. Jyoti Puttaradder
Smt. Jyoti Puttaradder is Senior Research Fellow at Department of Botany, Karnataka University, Dharwad, Karnataka, India. She has completed her M. Sc in Botany, with Microbiology, Mycology and Plant Pathology as special paper and secured distinction in 2012 at Karnataka University Dharwad. Presently she is working for Ph. D with research Problem “AM Fungal Studies on some cultivars of Capsicum annuum L.” She was awarded UGC-UPE Fellowship for her Ph. D programme. She has published four articles in National and International journal. She has attended 10 National / International conferences.

Prof. H.C. Lakshman
Prof. H. C. Lakshman worked as assistant professor and associate professor in Botany for 20 years. He started his research work since 1987 and he worked on AM Fungi for his Ph. D degree, entitled VA-Mycorrhiza studies on some important timber tree species. and he joined Karnataka University as professor in 1996. He worked on mycorrhiza in various aspects mainly on Ecology, Taxonomy, Histochemistry, Growth response physiology, interaction studies with other beneficial microorganisms. He served as Chairman (2009-2011), visited France and Italy to present his research paper in 2001. He was awarded F.B.S. (Fellow of Indian Botanical Society) in 2014. He successfully Supervised 25 Ph.D students and M.Phil students. And he complete three major two minor research projects funded by UGC and DST and Published more than four hundred research papers in national and International journals, attended 98 National/ International conferences. And his credit he written/ edited 17 books on important subjects.