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 

Abstract— This article compares different estimation methods 

specially designed to combat the problem induced by 

multicollinearity using real life data of different specifications 

and distributions. From the mean squared error of the samples 

studied we observed that Partial least square came up as the best 

estimator among the methods we studied. Stepwise regression 

performs better when the predictor variables are highly 

correlated. Under the ridge regression study the smallest 

eigenvalue of the predictor variables of the original data was 

used in determining the ridge parameter of ridge regression 

since the variances of some of our samples cannot be estimated 

by ordinary least squares regression. From our results we found 

that among all the methods we studied PLSR estimator stands 

the “best”, followed by the stepwise regression and then the 

PCR estimator in predicting the response variable. We are not 

surprise that RR estimator stands the least among the methods 

since it is known as biasing estimator and more useful in 

estimating the parameters of the model.  We also wish to state 

that PLSR is efficient in prediction when the sample size is very 

small.  

 

Index Terms— Multicollinearity, Principal component 

regression, Eigen value, Partial least squares, Ridged regression, 

Nonorthogonal data and Stepwise regression. 

 

I. INTRODUCTION 

   The term multicollinearity is used to denote the existence of 

a perfect or exact, linear relationships (or near perfect 

relationships) among some or all explanatory variables of 

regression model [1].  If the explanatory variables are 

perfectly correlated, that is, if the correlation coefficient for 

these variables is equal to unity, the parameters become 

indeterminate: it is impossible to obtain numerical values for 

each parameter separately and the method of least squares 

breaks down.  Multicollinearity may also be induced by the 

choice of model, for instance, the addition of polynomial 

terms to a regression model may cause ill-conditioning in 

. Furthermore if the range of  is small, adding an  

term can result in severe multicollinearity and also if the 

number of explanatory variables are more than the sample 

size LS method may produce misleading result.  

    Several techniques have been proposed for dealing with the 

problems caused by multicollinearity. The general approach 

include the collection of additional information, model 

re-specification and the use of estimation methods specially 

designed to combat the problem induced by multicollinearity.   
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Collecting additional information is not always possible 

because of economic constraint or because the process being 

studied is no longer available for sampling. Even when the 

additional data are available, it may be inappropriate to use if 

the new data extends the range of interest. Furthermore, if the 

new data points are unusual or atypical of the process being 

studied, their presence in the sample could be highly 

influential on the fitted model. Finally, it is good to note that 

the addition of more data is not a valid solution to the problem 

of multicollinearity especially when the multicollinearity is 

due to constraint on the model or in the population.                                                                                                                                    

    Some re specification of the regression equation may lessen 

the impact of multicollinearity especially when it is caused by 

the choice of  model. Model respecification done by either 

redefining the regressors or by variable elimination may not 

provide a satisfactory solution if the new model does not 

preserve the information contained in the original data and or 

if the regressors dropped from the model have significant 

explanatory power relative to the response variable.   

    With the impending dangers of the two scenarios 

discussed, this paper aimed at discussing and comparing 

different estimation methods designed to solving the 

problems of multicollinearity. The methods include Principal 

component regression, Partial least squares, ridged 

regression, and stepwise regression.  Three different types of 

multicollinear data ( when the sample size is smaller than or 

equal to the number of the predictor variables, where the 

predictor variables are highly correlated, and when  the 

polynomials terms are added to the model) were studied with 

intention of finding the best method for each data type.               

II. ESTIMATION METHODS 

A. Partial Least Squares 

Partial least squares (PLS) is a method for constructing 

predictive models when the factors are many and highly 

collinear [2]. Emphasis of PLS is on predicting the responses 

and not necessarily on trying to study the underlying 

relationship between the variables. For example, PLS is not 

usually appropriate for screening out factors that have a 

negligible effect on the response.  However, when prediction 

is the goal and there is no practical need to limit the number of 

measured factors, PLS can be useful tool. 

PLS can be applied in monitoring industrial processes; a large 

process can easily have hundreds of controlling variables and 

dozens of outputs. 

Multiple linear regression can be used with very many factors. 

However, if the number of factors gets too large (for example, 

greater than the number of observations), you are likely to get 

a model that fits the sampled data perfectly but that will fail to 

predict new data well. This phenomenon is called over-fitting. 

In such cases, although there are many manifest factors, there 

A Comparative Study of Some Estimation Methods 

for Multicollinear Data 

Okeke Evelyn Nkiruka, Okeke Joseph Uchenna 



 

A Comparative Study of Some Estimation Methods for Multicollinear Data 

                                                                                              36                                                                          www.ijeas.org 

may be only a few underlying or latent factors that account for 

most of the variation in the response. The general idea of PLS 

is to try to extract these latent factors, accounting for so much 

of the manifest factor variation as possible while modeling the 

responses well 

The aim of partial least squares is to predict the response by a 

model that is based on linear transformation of the 

explanatory variables. Partial least squares (PLS) is a method 

of constructing regression models of type 
                                                            

                                                                                           1 

Where the   are linear combination of the explanatory 

variables  such that the sample correlation for any 

pair  (i, j) is 0. Following the procedures given in [3], all 

the data are first centered. Let   denote the sample 

means of the -data matrix 

 
and denote the variables 

                                                   

                             
then the data values are the T-vectors 

                          

                          
The linear combination   called factors, latent variables, or 

components, are then determined sequentially. The procedure 

is as follows: 

i.  is first regressed against , then regressed against 

,…, then regressed against .  Then univariate 

regression equations are  

                        
              where   

Then each of the k equations in *(6) provides an estimate 

of  To have one resulting estimate, one may use a 

simple average  or the weighted average 

like 

                              
with the data value 

                                   
ii. The variable  should be a useful predictor of  and 

hence of Y. The information in the variable  that is 

not in  may be estimated by the residuals from a 

regression of  on  which are identical to the 

residuals, say , if  is regressed on   that is  

                                   
     To estimate the amount of variability in Y that is not 

explained by the predictor , one  

    may regress  on  and take the residuals, say . 

iii. Define now the individual predictors 

           

where 

 

      and the weighted average 

                        
iv. General iteration step 

Having performed this algorithm k times, the 

remaining residual variability in Y is  and the 

residual information in  is  , 

where 

                 
and   

                     
Regressing  against  for  

gives the individual predictors 

 

                       
with  

 
and the (k+1)th component 

             
v.  

Suppose that this process has stopped in the pth step, 

resulting in the PLS regression model given in (1). 

The parameters  are estimated by 

univariate OLS. This can be proved as follows.  

In matrix notation we may define 

                 
 

           

             

             
 

              
By construction the sample residual   are orthogonal to 

, implying that  for , 

hence,  for , and finally’ 

 

The well know feature of the PLS is that the sample 

components  are pairwise uncorrelated. The simple 

consequence is that parameters  may be estimated by 

simple univariate regression of Y against . Furthermore, 

the preceding estimates  stay unchanged if a new 

component is added. 

B. Principal Component Regressio 

   Principal component regression is a regression procedure 

used in the presence of multicollinearity among the k 
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dimensional random vector of the predictor variables . That 

is, where the matrix of X is not of full rank ( ) or 

when the number of predictor variables are more than the 

sample size. 

    The model of principal component regression is of the form 

                                             
This can as well be written as 

 

                                                  
     where  and  

     Let the column of the orthogonal matrix    

of the eigenvectors of  be numbered according to the 

magnitude of the eigenvalues  .  Then the 

 is the  principal component and we get 

                                            
We now assume exact multicollinearity. Hence 

 with  . We get  

                                               
According to the subdivision of the eigenvalues into the 

groups  and , we 

define the subdivision 

    ,      

 
with  as in (24). We now define  

                                      

                                          
 

The OLS estimate f the -vector  is 

. The OLS estimate of the full vector  is  

                                        
. 

                                                 
with 

  

 
being a generalized inverse of Ʌ 

 

C.   Ridge Regression 

   When the method of least squares is applied to 

nonorthogonal data, very poor estimate of the regression 

coefficients are usually obtained, the variance of the Least 

square (LS) estimates of the regression coefficient may be 

considerably inflated, and the length of the vector of least 

squares parameter estimates is too long on the average [4]. 

This implies that the absolute value of the least squares 

estimates are too large and that they are very unstable, that 

their magnitude and signs may change considerably given a 

different sample,  

The problem with the method of LS is the requirement that the 

estimator of  should be unbiased. The Gauss-Markov 

property of regression parameter assures us that the LS 

estimator  of  has minimum variance in the class of 

unbiased linear estimators without guarantee that the variance 

will be small. If the variance of  is large, it implies that 

confidence interval on  would be wide and the point 

estimate   is very unstable. 

One way to alleviate this problem is to drop the requirement 

that the estimator of  be unbiased. [5] and [6]  proposed a 

biased estimator (ridge estimator) of ,  

  

                                
 that has a smaller variance than the unbiased estimator . 

This ridge estimator is a linear transformation of the LS 

estimator since  

                                  

                                     

               
                   

  where and  are found from the least square 

solution. 

[7] stated that both the mean squared error and the smallest 

eigenvalue of the predictor variables of the original data play 

vital role in determining the biased parameter (k) of ridge 

regression. [9] showed through simulation that the resulting 

ridge estimator had significant improvement in mean squares 

error (MSE) over LS. 

The mean square error of the estimator  is defined as  

              

 

              
Note that the MSE is just the expected squared distance from 

to . By allowing a small amount of bias in ,  the variance 

of  can be made small such that the MSE of  is less than the 

variance of the unbiased estimator  Consequently 

confidence interval on  would be much narrower using the 

biased estimator. The small variance for the biased estimator 

also implies the  is a more stable estimator of  than the 

unbiased estimator .  

 

D.   Stepwise Regression 

    In deciding on the “best” set of explanatory variable for a 

regression model, researchers often follow the method of 

stepwise regression. In this method the ordinary least square 

(OLS) regression of the variables are performed by 

introducing the X variables one at a time (stepwise forward 

regression) or by including all the possible X variables in one 

multiple regression and rejecting them one at a time (stepwise 

backward regression).The decision to add or drop a variable 

is usually made on the basis of the contribution of the variable 

to the error sum of squares (ESS) of the F test. 

 

III. THE DATA SETS AND THEIR RESULTS  

   To compare the performance of the methods that we have 

considered seven different real data sets were studied to 

investigate their effectiveness at predicting response variable 

using their mean squares error (MSE). Attempt was also made 

to see how a biased regression estimator (ridge regression) 

competes with other estimators we studied. The data sets 

studied includes: a data sets that contains predictor variable 

that are highly correlated, this data set is from Nigeria Stock 

Exchange and is based on their transaction for the period of 

1991-2007. The data is available at [8]; a data set from 

chemometric study where the number of predictors are far 

more than the sample size; and a data set with polynomials of 
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different degrees of predictor variable. A case of time series 

data was also considered where time is included as a predictor 

variable. This data is obtained from [1]. Three different data 

sets with very small sample sizes at varying number of 

predictor variables were studied in an effort to find the best 

estimator that is suitable when dealing with small sample size 

problem. One of the data is on  emission and its possible 

correlates of four countries, while the other two are sampled 

data from some data we found in [1]. The mean squares error 

of each of the estimators described in section two was 

computed for all the seven data sets. Partial least square 

regression offered an almost imperceptible improvement over 

other estimators. The specified results for the estimators are 

not reported here to save space and to focus more on the main 

objective of this  

study. The MSE estimates for all the methods we considered 

are provided in Table I. For each of the seven data sets, the 

OLS regression estimators along with the other estimators 

discussed in section II were ranked according to their MSE 

values with the lowest ranks corresponding to lowest MSE. 

The median of the ranks for each method is given in Table II. 

    In this study we made effort to finding the best regression 

estimator in predicting the response variable. Four useful 

estimators for treating multicollinearityr were compared 

together with OLS in each data set. Sample correlations 

between pair of predictor variables of data set 2 in column 3 

of Table I range from 0.421 to 1.000. For PCR estimator, the 

last eigenvalue of  was used in determining the biasing 

parameter of ridge regression since we could not run OLSR of 

some of our data sets due to small nature of our sample size. 

Here efforts were made to select the principal components 

that account for 90% and above of the total variation in the 

original data.  In most cases not all the components are 

considered in PLSR estimator. Only those components that 

provide the desired results were considered.    

  

IV. DISCUSSION 

   The OLSR and ridge regression estimators performed quite 

poorly in all the data sets we studied. This comes as no 

surprise because the selected data sets were chosen to study 

the behavior of the estimators when OLSR estimation is 

expected to be deficient. Also since the measure of error is 

used for comparison it is expected that ridge regression 

estimator as a biasing estimator will not be effective in 

predicting Y. In four of the seven data sets studied OLSR 

estimator produces no result. We are not surprise that the rank 

of OLSR is 1 in the first data set in column 2 of Table I 

because it has been said in the literature that if the sole 

purpose of regression analysis is prediction or forecasting, 

then multicollinearity is not a serious problem because the 

higher the ,the better the prediction. 

    We observed that method D, stepwise regression estimator 

(which is often used in deciding the “best” set of predictor 

variables for a regression model) produced fairly good result 

with median rank of 2 as can be seen in table II. This method 

is second to the best methods we studied. 

    The method of PLSR is the “best” among all the methods 

we studies with a median rank of 1. This method came first in 

five of the data sets we studied and took second and third 

position in the remaining two data sets. 

    PCR estimator, method B is next to stepwise regressing in  

predicting the response variable of regression analysis with 

the median rank of 3 as can be seen in Table II. 

    Among the weakest estimator in predicting Y variable we 

studied is RR estimator. This method took the last position 

among other methods we studied as can be seen in Table II. It 

is good to note that one may get different result when other  

methods (e.g. variance of the distribution) are used in 

determining the biasing parameter of ridge regression. From 

Table I, it is clear that this method can produce misleading 

result when the sample size is very small and less than or 

equal to the number of the predictor variables. See tables 

below.  

 
Table I: MSE of Different Estimators across Different types of 

Multicollinear Data 

Estim

ator 

 

Data 

with 

time as 

predicto

r 

variable 

Highl

y 

correl

ated 

data 

Data 

with 

size 

n=15; 

p=25 

Data 

with 

Differ

ent 

polyn

omials 

of  X 

Data 

with 

size 

n=p= 6 

Data 

with 

size 

n=4; 

p=6 

Data 

with 

size 

n=5;  

p=6 

OLSR 0.475 
10308

5 
- 0.054 - - - 

Stepw

ise 
0.57 

10272

7 
0.004 0.53 0.004 15620 0.33 

PLSR 0.474 
10308

8 
0.002 0.033 0 0 0.001 

PC 1.059 
10415

0 
0.015 2.72 0.431 22415 0.579 

RR 8.774 
29481

0 
0.062 0.075 1nfinity -1.665x1011-82650 

 

Table II: Estimators and their Ranks 
 

Estimators Ranks 
Median 

rank 

OLSR 2,2,2 - 

Stepwise 1,2,2,2,3,4 2 

PLSR 1,1,1,1,1,2,3 1 

PC 3,3,3,4,5 3 

RR 3,4,5,5 4.5 
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