

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-3, Issue-11, November 2016

 80 www.ijeas.org

Abstract— In this paper, by introducing a case study on

development of a first-person shooter game “Biosis” playable in

both iOS and Android platforms, we present guidelines for

developing one-source multi-platform mobile games using

cocos2d-x game engine. This paper also describes the

“ResourceMaker” implemented to share and manage game

assets efficiently in our multi-targeted development environment

and the level engine by using which game planners can easily

apply their designs to game levels. We expect that the presented

guidelines will help game developers reduce the time and cost for

development in the mobile game ecosystem, the life-cycle of

which is very short.

Index Terms—cocos2d-x, mobile game, multi-platform

I. INTRODUCTION

Recently, as the mobile platforms including smart phones

have achieved popular success, the size of the mobile game

market is also rapidly increasing [1]. As the market grows,

more and more types of smart devices are emerging. Even on

platforms that support the same operating system, many

various types of devices with different screen resolutions are

being announced.

Therefore, it is inevitable that the cost required to develop a

game for various platforms and display types as described

above is greatly increased. In addition, it is difficult to invest

a great deal of money, because the lifecycle of mobile games

is very short compared to PC and console games.

Due to the above reasons, many game engines have recently

been released that can develop games for multi-platform at

low cost. Multi-platform mobile game engines allow you to

run a developed game on a variety of platforms without any

porting process, they are gaining great popularity not only for

major development companies but also for indie developers

with relatively low budgets.

In this paper, we present the case study of developing a

first-person shooter game called "Biosis" (see Fig. 1) that can

be run on both iOS and Android operating systems, and

suggest guidelines for efficient development that we have

experienced.

The composition of this paper is as follows. Chapter II

describes the mobile game engines for multi-platform, which

are widely used. In Chapter III, we introduce the Cocos2d-x

used in this study and explain how to develop one-source

multi-platform games efficiently using this engine. In

Chapter IV, we explain an introduction to Biosis, a one-sous

multi-platform game developed in this study, and description

 Jinseok Seo, Division of Digital Contents Technology, Dong-eui

University, Busan, Korea

Hun Choi, Department of Electronic Engineering, Dong-eui University,

Busan, Korea

This Work was supported by Dong-eui University Foundation Grant

(2012)

of "ResourceMaker", a tool developed for efficient game

resource sharing and management. This chapter also

describes the level engine implemented to reflect the game

designers’ intention freely. Finally, Chapter V concludes the

paper.

Fig. 1: Title Screen of Biosis

II. MOBILE GAME ENGINES FOR MULTI-PLATFORM

Just before the popularization of mobile devices mainly

based on smartphones, PDAs (Personal Digital Assistance)

and Portable Multimedia Players (PMP) complemented the

lack of functions of mobile. Because there were a variety of

platforms and devices during this period, efforts were made to

provide a cross-platform game development environment for

PMP to save developers’ effort.

As smartphones become very popular, many

multi-platform game engines have been released. Some

well-known examples are Unity [3], ShiVa [4], Corona SDK

[5], Marmalade [6] and Cocos2d-x [7].

Unity3D is one of the most popular game engines in recent

years. Unity was originally developed for 3D games, but

recently it has also begun supporting 2D games. The biggest

advantage of Unity is that the development environment is

very comprehensive, so even the intermediate developers can

easily develop high-quality mobile games. On the other hand,

it is estimated that it works a little heavier than other game

engines, and the lower level control is a little inconvenient.

However, considering the recent increase in 3D game share in

the mobile game market and the speed of improvement of

GPU performance of mobile devices, Unity, which is a

relatively inexpensive 3D game engine, is expected to become

A Case Study on One-Source Multi-Platform Mobile

Game Development Using Cocos2d-x

Jinseok Seo, Hun Choi

A Case Study on Development of a One-Source Multi-Platform Mobile Game using Cocos2d-x

 81 www.ijeas.org

the best 3D mobile game engine for small or medium-sized

development companies or Indie developers.

Although ShiVa3D is not as widely used as Unity3D,

ShiVa3D, which can be regarded as almost similar in function

and convenience, has received much attention in recent years.

Compared to Unity3D, there is a lack of user forums and

documentation, but it is a little cheaper and is a great tool for

developers who are accustomed to the Lua language.

Corona SDK is also a commercially successful game

engine that can be developed in Lua language. Corona SDK

was developed with OpenGL, OpenAL, Box2D, and Lua.

Although it does not provide a convenient integrated

development environment like Unity or ShiVa, it is used by

many developers because of optimized performance.

Unity, ShiVa and Corona SDK described above use a

method that executes a user-written script language (for Unity,

the intermediate code compiled from C# language) in a

pre-developed player engine. In recent years, this type of

game engine has been widely used on most platforms,

including PCs. This is because, as described in the

well-known “90-10 rule (90 percent of the program execution

time runs only 10 percent of the code)”, implementing only

minimal performance-sensitive parts in native code and

implementing the rest using scripting languages does not

affect the overall software performance. However, using this

method has the disadvantage that it is inconvenient to

implement the optimized algorithm only by developers or add

customized functionalities to game engines.

Marmalade is a standard C++ language based game engine

without the above drawbacks. It is very easy to optimize

performance because it is implemented with 100 percent

native code. Thanks to Marmalade's optimized performance,

there are many commercially successful games developed

using this game engine, such as “Cut the Rope,” “Plants vs

Zombies,” “Call of Duty,” “Need for Speed,” and so on. If

you are developing using only native code without the support

of scripting languages, it is difficult to test or debug on the fly

while the game is running. However, in the case of mobile

games, the compiled code is not executed directly in the

development environment, but is executed remotely in

emulators or devices, the advantage of a dynamic scripting

language is not great.

With the game engines, we've just described, you should

pay for all your games to be released to stores or run directly

on devices. Especially, Marmalade and Corona SDK can be a

burden for indie developers and students who are learning to

make games, because they are required to pay annually. In

addition, all the above game engines cannot offer developers

complete freedom because the source code is not available.

Cocos2d-x, a game engine used in this study, is a

completely free engine, unlike the ones mentioned above, and

the source code is open. Therefore, developers can not only

modify released engine’s code directly, but also add new

functionalities freely. Of course, besides Cocos2d-x, there

are more free game engines with open source code, including

CuvicVR 3D Engine [8], IwGame Engine [9], jumpcore [10]

and Mao [11]. However, nowadays it is hard to find an engine

that has all the elements (audio, physics engine, particles,

various font rendering, GUI, various types of maps, etc.)

necessary to develop games as much as Cocos2d-x. A more

detailed description of Cocos2d-x will be given in Chapter III,

and the game engines described so far are summarized in

Table I.

. Table I: Comparison Table of Multi-Platform Mobile

Game Engines

Game

Engine
2D/3D Price

Open

Source
Language

Unity 2D/3D
Free(personal)

$125/m(pro)
X C#

Shiva 3D
$200(basic)

$1,000(adv.)
X Lua

Marmalade 2D/3D
$149/y(basic)

$1,499/y(pro)
X C++

Corona

SDK
2D/3D

Free(basic),

$79/y

$199/y

X Lua

Cocos2d-

X
2D Free O C++

Unreal 3D
Free,

5% of grs. rev.
O

C++

Blueprint

III. DEVELOPMENT OF ONE-SOURCE MULTI-PLATFORM

GAMES USING COCOS2D-X

A. Introduction to Cocos2d-x

Cocos2d was originally developed as a game engine for a

variety of desktop operating systems, including Windows,

Mac OS, and Linux. Most of the functions for 2D games,

such as scene flow and transition, easy and fast sprite

processing, various actions, and tile map, are available by

very intuitive APIs. At that time, the Python language was

adopted, and the games could be developed quickly and easily

without compilation process.

However, Cocos2d did not get much attention until smart

phones started to gain popularity and Cocos2d for iPhone was

developed. Cocos2d for iPhone was released as an engine to

develop games for iPhone after Apple launched iPhone and

start the App Store service. The basic engine architecture was

adopted from Cocos2d, but the language was based on

Objective-C. After several years of improvement, it became a

more complete 2D game engine. Thanks to its completeness,

the popularity has increased in recent years, so it is called by

the name Cocos2d instead of Cocos2d for iPhone.

The biggest disadvantage of Cocos2d for iPhone was that it

could only support games for the iPhone. The Cocos2d-x

game engine has emerged because of this problem.

Cocos2d-x also adopts the engine architecture of Cocos2d for

iPhone, but since it is based on the standard C ++ language, it

could be ported to various development environments and

mobile platforms including Android. In addition, for the

Android platform, JNI (Java Native Interface) and Android

NDK (Native Development Kit) can be used in developing

games.

B. Sharing Source Code and Resources

Although it depends on your target platform and

development environment, Ccoos2d-x is easy to use for most

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-3, Issue-11, November 2016

 82 www.ijeas.org

development environments and operating systems. However,

games for Android can be developed in any development

environment, but those for iOS can only be developed in Mac

OS. Therefore, we should build a development environment

on Mac OS, in order to develop games for both platforms in

one source code.

The most common development tools for developing

Cocos2d-x games on Mac OS are Xcode and Eclipse.

Depending on the developer's preferences and preferences, it

may be more convenient to choose Xcode as your main

development environment, considering the editing

capabilities, auto-completion, and debugging of C ++ code.

Even if you use Xcode as your main development

environment, you need to create a separate project for the

Android platform to build the binary package for Android. In

order to efficiently share source code and resources between

the two projects, it is necessary to refer to the source code and

the resources of other projects in one project.

The following is a sequence of steps for creating projects

and sharing source code and resources for both iOS and

Android projects.

1. Creating an Android project: Run the script

“create-android-project.sh” in the folder where

Cocos2d-x is installed to create the project.

2. Creating an Xcode project: Run the script

“install-templates-xcode.sh” in the folder where

Cocos2d-x is installed to copy template files for

Cocos2d-x to an Xcode project. After running Xcode,

create a new project with the same name you set in step

A.

3. Removing source code and resources for Android

project: Delete the “Classes” folder and the

“Resources” folder from the project folder created in

step A.

4. Setting for sharing source code and resources: In the

Android project folder, create a symbolic link to the

“Classes” and “Resources” folders in the Xcode

project.

Once you have completed the four steps above, even if the

source code and resource files are changed or added in Xcode,

the main development environment, the binary package for

the Android platform will be applied only when you compile

again.

C. Debugging

The main development environment, Xcode, provides a

very easy to use debugging environment compared to Eclipse,

and with the help of the tool called Instruments, we can detect

memory leaks very intuitively. In addition, the iOS simulator

works very fast, allowing testing and debugging several times

faster than running directly on the device.

Most of the time, when debugging is completed perfectly in

Xcode and iOS Simulator, it works well on iOS devices and

Android devices. However, because of the diversity of

mobile devices, excessive resource usage can cause problems

on certain Android devices, so you should perform validation

on your Android device at the main milestone point.

Debugging on an Android device can use the

“CCMessageBox” function to pop up a message box directly

on the device, but it is much more convenient to error and

warning messages using the “__android_log_write” function,

because of the nature of the game software operating in an

infinite loop. The Android system also allows logging to be

broken down into different stages according to priorities, and

filtering is also possible. You can use the "adb logcat"

command for log filtering and error dumping.

D. Various Aspect Ratios and Resolution Issues

Various Android devices have their own screen sizes,

screen aspect ratios and resolutions. In addition, recently,

iOS has been releasing new products with varying ratios and

resolutions as well.

The best method to support all these various display

devices is to prepare graphics image files that matches the

resolutions and ratios of all the devices you want to support.

However, this method also has the disadvantage that the size

of the final binary package becomes too large, and the game

logic is also very complicated for supporting various aspect

ratios and resolutions.

In order to solve the above problem, our study used a

method of fixing the aspect ratio and preparing only two or

three sets of graphics images for different resolution devices.

The aspect ratio can be fixed by using the

“setDesignResolutionSize” member function provided by the

“CCEGLView” class of Cocos2d-x API. A “CCEGLview”

object is obtained by the “getOpenGLView” function of the

“CCDirector,” a singleton object.

You should pass the horizontal and vertical resolutions as

the first and the second arguments of this function, and pass

the option flag as the third argument. Since the resolution

information transmitted by this function is not an absolute

resolution, it usually plays a role of fixing the aspect ratio

based on the one having the maximum resolution among the

devices to be supported. The third argument is usually the

value of “kResolutionAll.” This value allows the device to

create black space on the edges of the screen without

truncating the rendered image if the aspect ratio does not

match the device’s screen aspect ratio. The reason for using

this value is that clipping the rendered image may

occasionally drops the important graphical user interface.

The aspect ratio and resolution issue originally has separate

solutions for each of Android SDK, iOS SDK, and

Cocos2d-x. However, it is often the case that the solutions are

changed again each time a new SDK version or a new device

is released.

Although this problem is expected to be solved in a near

future, this study decided to use a method that is not

dependent on a specific SDK. We created a desired subfolder

for each resolution under the Resources folder, and then put

images with the same name but different resolutions into each

folder. Then we specified the desired subfolder for each

resolution with the “setResourceDirectory” function, which is

the member function of the “CCFileUtils” class’ singleton

object.

IV. BIOSIS DEVELOPMENT CASE

A. Introduction to Biosis

“Biosis,” a game developed in this study, is a touch-based

first-person shooter, and target platforms are iOS and

Android. Most smartphones do not have hardware buttons for

A Case Study on Development of a One-Source Multi-Platform Mobile Game using Cocos2d-x

 83 www.ijeas.org

applications, so game players use software buttons to move

their character and to fire weapons. Users can play games by

touching the rendered image button in the corner of the screen

with a finger. Because of this unintuitive interface approach,

first-person shooter games are less popular than other game

genres on smartphones.

In this game, we have devised a system that does not use the

traditional interface method like above, but can attack objects

such as monsters directly by touches or gestures. By using

this attacking system, players can throw various weapons

(grenades, rockets, bullets of shotgun, lasers, etc.) directly to

targets. The levels consist of a total of 18 stages, of which

four levels spawn bosses (see Fig. 2).

Fig. 2: Boss “Gargoyle” of Biosis

The player uses various weapons to attack the monsters (9

types in total). The player's life is set to the maximum value at

the beginning of each level, and when the enemy attack

reduces the life value to less than 0, the game ends. A variety

of special weapon attacks using gestures consume player’s

energy, and we must wait for the energy to be replenished

again to continue using special weapons.

B. Resource Management Tool: ResourceMaker

One of the most time-consuming aspects of game

development process is managing various game resources.

Some of the game resources are composed of files such as

graphic images, background sounds, and sound effects, and

some are composed of data such as strings, monster

information, and weapon information. A resource consisting

of a file is usually used by passing the path and the name

directly as a parameter of a specific function in source code.

A resource composed of data may be written in a specific

script language or a data file of a developer’s format.

In Biosis, we developed a resource management tool,

“ResourceMaker,” to store all information about resources in

a single “plist” (property list) file. The “plist” file is a data

structure that is originally supported by Objective-C, the main

development language of Mac OS and iOS. It can manipulate

data such as arrays, dictionary (maps), strings, and numbers in

a hierarchical structure. Cocos2d-x is a C ++ language, but it

also supports “plist” files in C ++ for compatibility with

Cocos2d for iPhone.

Fig. 3: An Example of “plist” file used in Biosis

To use the plist, we firstly place resource files, such as

graphic images, background sounds, and sound effects, in

their own subfolders (“image”, “bgm”, “sfx”) under the

project’s “Resources” folder. Then, “ResourceMaker”

automatically navigates to the project's subfolders and stores

the resources’ information in a “plist” file as a dictionary data

structure. For example, if you have a “background_1.png”

file in the “image” folder, the key in the dictionary will be the

string “IFN_background_1_png” and the value will be the

path and filename of the actual resource file, such as “image /

background_1.png.” If you need a multi-lingual version, you

should create subfolders under the “image” folder such as

“eng” or “kor” to save the file, then the “plist” file would

contain each resource in its own separated dictionary data

structure.

When the making of the “plist” file is completed,

“ResourceMaker” creates the “Defines.h” header file. In this

file, “#define” macros defines the strings, which used as key

values in the dictionary data structure, as constant values.

Defining these key values as constant values can reduce

typing errors when coding a program and prevent access to

the wrong resource at compile time. In game programming,

source code directly accesses many of resource files as literals

that represent file paths and names. Even if there is a typo in

the literal that indicates the path and name of a resource file in

source code, there would occur no error at compile time, but it

could be a big problem because there is a high probability of

error when accessing the resource with wrong path and file

name at runtime.

Resources composed of data, such as strings, monster

information, and weapon information, are usually created in a

spreadsheet program such as Microsoft's Excel or Apple's

Numbers. Spreadsheet programs are easy to use by game

designers who have no knowledge of computer programming,

so their intentions can be applied freely without the help of

programmers. Data written in a spreadsheet can be saved as a

comma-separated values (csv) file, which the

“ResourceMaker” program interprets and adds dictionary

data to the “plist” file. In addition, the “ResourceMaker”

automatically creates “#define” macro statements in the

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-3, Issue-11, November 2016

 84 www.ijeas.org

"Defines.h" header file. The monster information written in

the spreadsheet includes life, armor, attack damage, attack

range, speed, weight, and reward, and the weapon information

is about consumed energy, attack power, attack range, and

cool time (the time from the last firing to the next firing).

C. Level Engine

For multi-level games like Biosis, designing each level

takes a lot of planning work. The level data consists of game

events such as the appearance of monsters (including name,

position, etc.), dialogues, various power ups (such as health

packs, weapons, and items), and changes of background

music. Each game event occurs only when certain conditions

are met. Examples of conditions include “after a certain

amount of time has elapsed” or “when all monsters have

disappeared”.

In Biosis, all game events are also written in a spreadsheet.

The written events data is integrated into the “plist” file by

“ResourceMaker.” Then, the integrated game events data is

processed in turn in the main loop of the level engine.

By using the level engine that is implemented as described

above, there is no need to change the source code even if a

new level is added or an existing level design is changed. This

means that game designers can freely design various levels

without the help of a programmers.

V. CONCLUSION

In this paper, we presented a development example of a

mobile game called “Biosis” and proposed guidelines for

developing one-source multi-platform mobile games using

the Cocos2d-x engine. The developed game worked perfectly

on both the iOS and Android platforms, without any porting

process. In addition, we introduced methods and tools to

facilitate resource management and share them among

multiple platforms, and added an introduction to the level

engine to allow game designers to freely design game levels

without the help of programmers.

The proposed guidelines are expected to help reduce time

and costs for small and indie game developers in the current

mobile game ecosystem which has very short life-cycle.

ACKNOWLEDGMENT

This Work was supported by Dong-eui University

Foundation Grant (2012).

REFERENCES

[1] K. Jeong, “Future Direction of Mobile Game Market according to the

Advance of Mobile Device Capability,” Journal of Digital Contents

Society, Vol 11, No. 4, pp. 495-501, Dec. 2010.

[2] Ya-Ri Lee, Jung-Sook Kim, “Cross Platform Game Development

Environment for PMP,” Journal of Digital Contents Society, Vol 8, No.

3, pp. 377-383, Sept. 2007.

[3] Unity - Game Engine, “http://unity3d.com”

[4] ShiVa3D - Game engine with development tools, “http://www.

stonetrip.com”

[5] Develop Cross Platform Mobile Apps and Games | Corona Labs,

“http://www.coronalabs.com”

[6] Mobile Application Development, iPhone & Android App

Development - Marmalade, “http://www.madewithmarmalade.com”

[7] Cocos2d-x | Cross Platform Open Source 2D Game Engine,

“http://www.cocos2d-x.org”

[8] CuvicVR 3D Engine, “http://www.cubicvr.org”

[9] IwGame Engine | DrMop, “http://www.drmop.com/index.php/

iwgame-engine”

[10] jumpcore, “https://bitbucket.org/runhello/jumpcore/wiki/Home”

[11] Moai | The mobile platform for pro game developers,

“http://getmoai.com”

Jinseok Seo received the M.S. and Ph.D. degrees in Computer Science

and Engineering from Postech, Korea, in 2000 and 2005, respectively. Since

2005, he joined the division of digital contents technology, Dong-eui

University, Busan, Korea. His main research interests are artificial

intelligence for computer games, game engines, virtual reality, and

augmented reality.

 Hun Choi received the M.S. and the Ph.D. degrees in electronics from

Chungbuk National University, Korea, in 2001 and 2006, respectively. From

2006 to 2008, he was Post Doc. at KRISS, KOREA. Since 2008, He joined

the division of Electronic engineering, Dong-eui University, Busan, Korea.

His research interests include adaptive signal processing, measurement

signal processing and communication system.

