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Hybrid Differential Evolution For Combined Heat
And Power Economic Dispatch Problem
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Abstract—This paper presents a hybrid differential evolution
with multiplier updating (HDE-MU) to solve the complex
combined heat and power economic dispatch (CHPED)
problems. Transmission losses and valve-point effects of
conventional thermal generators are taken into account. The
hybrid differential evolution (HDE) has the ability to efficiently
search and actively explore solutions. Multiplier updating (MU)
is introduced to avoid deforming the augmented Lagrange
function (ALF), which is adopted to manage system constraints
of the CHPED problem. The proposed HDE-MU integrates the
HDE with the MU. A practical CHPED system is employed to
demonstrate that the proposed algorithm has the benefits of
straightforwardness; ease of implementation;  better
effectiveness than the previous methods, and the requirement
for only a small population when applied to the CHPED
operation.

Index Terms—Combined heat and power, differential

evolution, economic dispatch, multiplier updating.

I. INTRODUCTION

The conversion of fossil fuel into electricity is not an
efficient process. Even the energy efficiency of the most
modern combined cycle plants are between 50 and 60%
efficient [1]. Most of the energy wasted in the conversion
process is heat. Recently, combined heat and power (CHP)
units have played an increasingly important role in the utility
industry [2~ 6]. Complexity arises if one or more units
produce both power and heat. Such a case, both the power
demand and the heat demand must be satisfied. Cogeneration
units provide both electrical power and heat to customers. The
heat production capacity of most cogeneration units, depend
on the power generated, and vice versa. The mutual
dependency of multiple-demand and Heat-Power capacity of
those units introduce complexities in the integration of
cogeneration units into the economic dispatch problem. The
CHPED problem even may be more complicated if
transmission losses and valve-point effects are taken into
account. Solving such a complex optimization problem
requires powerful techniques. Non-linear optimal algorithms,
such as dual and quadratic programming [7], and gradient
descent approaches, such as Lagrangian relaxation [8], have
been applied for solving CHPED problems. However, these
methods cannot handle non-smooth non-convex fuel cost
function of the conventional thermal generator. The advent of
stochastic search algorithms has overcome this problem for
solving CHPED problems. Gravitational search algorithm
(GSA) [2], cuckoo search algorithm [3], group search
optimization (GSO) [4], exchange market algorithm [5], real
coded genetic algorithm [6], opposition-based group search
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optimization (OGSO) [9], Improved ant colony search
algorithm [10], evolutionary programming [11], genetic
algorithm [12], harmonic search algorithm [13], hybrid
particle swarm optimization [14], self-adaptive real-coded
genetic algorithm [15], novel selective particle swarm
optimization [16], mesh adaptive direct search algorithm [17],
oppositional teaching learning based optimization (OTLBO)
[18], particle swarm optimization with time varying
acceleration coefficients (TVAC-PSO) [19] and krill herd
algorithm (KHA) [20] have been applied to solve the CHPED
problems. The results obtained by the proposed algorithm,
involving HDE and MU, have been compared with the
existing methodologies reported in recent literature.

Storn and Price [21] developed the Differential evolution
(DE) which immediately gained popularity as a robust
evolutionary algorithm. DE has been widely applied to the
optimization problems in the power systems [22~ 26].
Throughout the years, DE has been used extensively for
optimization problems, many results of which are the best
compared to other standard methodologies. However, it has
problems of converging onto local optimal solutions. A
migration [27] is embedded in the proposed HDE to
overcome such drawbacks for solving CHPED problems. The
migration operation is included in the HDE to regenerate a
newly diverse population, which prevents individuals from
gradually clustering and thus greatly increases the amount of
search space explored for a small population.

The rest of this paper is organized as follows: in the next
section, the basic equations governing CHPED have been
briefly outlined. Section I1l explains the basic framework of
the proposed algorithm involving HDE and MU. Section IV
describes the test system, compares the results obtained by
HDE-MU with other methods and provides the analysis of the
obtained results. Finally, the conclusion is drawn in Section
V.

Il. PROBLEM FORMULATION

A. Objective function

The CHPED problem is to determine the unit power and
heat production so that the system’s production cost is
minimized while the power and heat demands and other
constraints are met. It can be mathematically stated as,

n n n,
Minimize ZD:COSti(Pi)+ Zb:Costj(H i P; )+ Zh:Costk(Hk) (1)
i1 =t ko

pl @
Costy (Hy) = ay +bHy + ¢ HY 4

Where

Cost; (Py) = & +D;P, +¢;P? +[e; xsin(f; x (A"

WWW.ijeas.org



Hybrid Differential Evolution For Combined Heat And Power Economic Dispatch Problem

and where P stands unit power generation; H is unit heat
production; Costi(P;) with i=1,2,..., n, represents the cost
function of the it" power-only unit in $/h and a;, b;, and c; are
cost coefficients of generator i, and e; and f; are fuel cost
coefficients of unit i with valve-points effects; Costj(H;,P))
with j=1,2, .., ny is the fuel cost function of the j" CHP unit in
$/h and ay, by, ¢;, dj, 1j, and w; are cost coefficients of unit j;
Cost(Hy) with £=1,2, ..., ny, represents the cost function of the
K heat-only unit in $/h and a, by, and ¢ are cost coefficients;
Ny, Ny, and nyp denote the number of power-only units,
co-generation units, and heat-only units, respectively;
subscripts of i, j, and k are used for above mentioned unit; it
should be mentioned that (P;, P;) and (H;, Hy) are the output
active power (in MW) and heat production (in MWth),
respectively.

B. Constraints

Subject to the equilibrium constraints of electricity and
heat production, and the capacity limits of each unit. Power
and heat balance equations are represented by equality
constraints (5) and (6), respectively.

np ny,

i=1 j=1
Ny Ny
j=1 k=1

Pimin < P| < Pimax'

i=1-,n, @

ijin(Hj)S P < ijax(Hj), J :1;"';nb (8)

H™ (P, )< H

J

<H™(P),

| j=1,...,nb

i

©)

HM™<H, <H™, k=1---,n 10)

Where P4 and Hy are system power and heat demands,
respectively. In general, the transmission losses (PLm) of (5)
can be calculated through the power generation of all units
which is known as B-matrix approach (kron’s loss formula
[1]). P™" and P™* are unit power capacity limits; h™" and h™®
are unit heat capacity limits.

The CHPED problem clearly introduces the complication
of more constraints than in required pure power economic
dispatch problem. The insufficiencies difficulties with
conventional methods thus follow from the fact that CHPED
is a highly constrained optimization problem.

I1l. THE PROPOSED HDE-MU

A. Differential evolution (DE)

The DE algorithm is one of the population-based
optimization algorithms. The steps for implementing DE are
as follows [21]:

Step 1: Initial population: A population of Np initial
solutions randomly distributed in the n, dimensional search
space of the optimization problem, are initiated. The DE uses

N, vectors of variables x in the optimization problem, namely,
xC ={xiG,i =l---.Np}’ as a population in generation G. For
convenience, the decision vector, X, is represented as
(Xli-“xji“'xnci)' Here, the decision variable, x; is directly

coded as a real value within its bounds of (xT‘”, x"™) . Each

individual is generated as follows:

|
Me-=0
j=12,..n.,

X = X"+ rand (0.1) * (x| — x"") 11)

J
i :1’2""'NP

Where rand(0, 1) is a random number between 0 and 1.
Step 2: Mutation operator: In mutation step, for each
individual x; (target vector) of the new population, three

different individuals X1, X2, and X5 (rl# r2# r3# i) are
pseudo-randomly extracted from the population to generate a
new vector as:

Zji = Xjrp + F*(Xjr2 = Xjr3)

i=12..n, (12

Where F €[0,2] is a uniformly distributed random number

which controls the length of the population exploration vector
(sz - Xr3)-

Step 3: Crossover operator: After mutation step, the
crossover operator, according to the following equation, is
applied on the mutation vector Z; and the vector x;; to generate
the trial vector Uj;, for increasing population diversity of the
mutation vector.

7.

mw
Uji = X

jir

i=12,...n,

if rand (0,1) <CR
otherwise

i=12,...Np

13)

Where CR <[0]] is known as the crossover rate which is a

constant.

Step 4: Selection & evaluation operator: The selection &
evaluation process is repeated for each pair of target/trial
vectors using the evaluation function F(U;;) to compare with
the evaluation function value F(x;;), and the better one will be
selected to be a member of the DE population generation for

the next iteration (x§™).

B.HDE

In HDE [22~ 26], the one-to-one competition will have a
faster convergence speed to give a higher probability toward a
global optimum with much less computation time. It can use a
small population in the evolutionary process to obtain a global
solution. Generally, Evolutionary optimization involves two
critical issues evolutionary direction and population diversity.
As the evolutionary direction is effective in searching, the
strong evolutionary direction can reduce the computational
burden and increase the probability of rapidly finding an
(possibly local) optimum. As population diversity is increased,
the genotype of the offspring differs more from the parent.
Accordingly, a highly diverse population can increase the
probability of exploring the global optimum and prevent a
premature convergence to a local optimum. These two
important factors are here balanced by employing the
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migration [27] into HDE that can determine an efficacious
direction in which to search for a solution and simultaneously
maintain an appropriate diversity for a small population. The
migrant individuals are generated based on the best

indivi G G+1 G+1 -uni
individual, xg Xap e Xn) o+ DY non-uniformly

random choice. Genes of the i"" individual are regenerated
according to

+1 — (Xl(l-i;+1

G+l
b~
max _
j

) ,otherwise

min
J
min
X]

X X

G+l min
G+ _ Xib +,D(Xj -
XJI =

G+l

G i <

(14)

G+l max G+l

where j =1, ..., ne; i =1, ..., Np, rpand p are random numbers
in the range of [0,1]. The migration may be performed if only
the best fitness has not been improved for over 500
generations running, and the migrant population will not only
become a set of newly promising solutions but also easily
escape the local extreme value trap. More details of the HDE
have shown in [22~ 26].

C.MU

Michalewicz et al. [28] surveyed and compared several
constraint-handling techniques used in evolutionary
algorithms. Among these techniques, the penalty function
method is one of the most popularly used to handle
constraints. In this method, the objective function includes a
penalty function that is composed of the squared or absolute
constraint violation terms. Powell [29] noted that classical
optimization methods include a penalty function have certain
weaknesses that become most serious when penalty
parameters are large. More importantly, large penalty
parameters ill condition the penalty function so that obtaining
a good solution is difficult. However, if the penalty
parameters are too small, the constraint violation does not
contribute a high cost to the penalty function. Accordingly,
choosing appropriate penalty parameters is not trivial. Herein,
the MU [30] is introduced to handle this constrained
optimization problem. Such a technique can overcome the ill
conditioned property of the objective function. Considering
the nonlinear problem with general constraints as follows:
Where hy (x) and gy (X) stand for equality and inequality
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min f (x)
X
subject  to  h(x)=0, k=1..m, (15)
gk(x)soﬂ k:]')"'vmi

constraints, respectively.
The augmented Lagrange function (ALF) [29] for
constrained optimization problems is defined as:

La(kvi0)= £00+ San{ () + v B —vE }
k=1

}

(16)

—v?

+kzi:,3k{ <9k(x)+Uk>i
-1

where ¢ and S are the positive penalty parameters, and the
corresponding Lagrange multipliers v = (Vl""'Vme) and

v=(v,..,Uy) > 0 are associated with equality and

inequality constraints, respectively.

The contour of the ALF does not change shape between
generations while constraints are linear. Therefore, the
contour of the ALF is simply shifted or biased in relation to
the original objective function, f(x). Consequently, small
penalty parameters can be used in the MU. However, the
shape of contour of L, is changed by penalty parameters while
the constraints are nonlinear, demonstrating that large penalty
parameters still create computational difficulties. Adaptive
penalty parameters of the MU are employed to alleviate the
above difficulties. More details of the MU have shown in
[30].

D.The proposed HDE-MU

Figure 1 displays the flow chart of the proposed algorithm,
which has two iterative loops. The ALF is used to obtain a
minimum value in the inner loop with the given penalty
parameters and multipliers, which are then updated in the
outer loop toward producing an upper limit of L,. When both
inner and outer iterations become sufficiently large, the ALF
converges to a saddle-point of the dual problem [28].
Advantages of the proposed HDE-MU are that the HDE
efficiently searches the optimal solution in the economic
dispatch process and the MU effectively tackles system
constraints.
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IV. SYSTEM SIMULATIONS

This section considers a practical CHPED system which
contains four conventional power units, two cogeneration
units, and one heat-only unit. The system power demand (Pg)
and heat demand (Hg) of this CHPED problem are 600MW
and 150MWsth, respectively. The valve-point effects and
transmission loss are both considered, and this example used
the linear boundary of the Heat-Power feasible region for
cogeneration units. The associated data of this CHPED
problem are the same as [19].

Figure 2 clear shows the feasible power and heat output
region of cogeneration unit 1 and 2, and demonstrates
correlations between the power and heat outputs.

The MU algorithm was used in HDE to hand the equality
and inequality constraints. The computation was implemented
on a personal computer (CPU clock 2.0GHz with 4G Ram) in
FORTRAN-90 language. Setting factors used in this example
are as follows; the population size N, is set as 5 for HDE-MU.
The iteration numbers of outer loop and inner loop are set to
(outer, inner) as (20, 3000). The implementation of the
proposed algorithm for this example can be described as
follows:

La(or0)= £ 00+ Y e I 00+ v P -2 )
k=1

6
+3 A {9 0 +o, )2 —vE ) 17)
k=1

objective:

f(x)

min
x=(P,,Py. Py, Py P, Ps Hs Hg H7)

f(x)= iCosti(Pi) + iCostj (H;,P;) +Cost,(H;) (18)
i=1 j=5

Costy (P,) = 0.008P? + 2P, +25+[100sin(0.042* (10 - R)
Cost,(P,) = 0.003P; +1.8P, +60+[140sin(0.04* (20— P,) |
Costy(P;) = 0.0012P; + 2.1P, +100 +[160sin(0.038* (30— Py) )
Cost, (P,) = 0.001P + 2P, +120+[180sin(0.037* (40— P,) |

Costs(Hs, P;) = 0.0345P2 +14.5P, + 0.03HZ +
4.2H; +0.031R,H; + 2650

Costg(Hg, P;) = 0.0435P2 + 36P, +0.027HZ +
0.6Hg +0.011P;Hg +1250

Cost, (H;) =0.038H2 + 2.0109H, + 950

Subject to;

hy: P +P,+P;+P,+P;+P;—P; —PLm=0
h,: Hs+Hg+H;-Hy;=0

g;: 1.78191489361H4 — P; —105.744680851< 0
g,: 0.177777778H; + P; —247.0<0

g;: —0.16984732824H; — P; +98.80<0

g,: 1.15841584158H, — P; —46.8811881188<0

_ ~Ps +440<0, if Hg<159

95 {— 0.06768189509H , — P, + 45.0761421319<0, if Hq>15.9
_ P, —1258<0, if Hy<324

9o {0.15116279069H6 +Ps —130.607674418<0, if Hg>324

This minimum cost problem consists of one objective
function with nine variable parameters, (P1, P,, P3, P4, Ps, P,
Hs, Hg, and H-), two equality constraints, (h; and h;), and six
inequality constraints, (g;~ gs), in the Heat-Power available
region.

This CHPED example is used to illustrate the effectiveness

where of the proposed HDE-MU with respect to the quality of the
solution obtained. This test shows the validly and
practicability of general use for the CHPED problems. Table
1 compares nine computational results obtained from the
Table 1: Comparison of the proposed HDE-MU with previous methods
Methods
HDE-MU | GSA 2] |0Gs0 [9]| GsO [4] OB[IQ]BO TLBO [18] TVA[fg']PSO KHA [20] [cPsO [19]
Items
P(G1) 45.56400 | 48.7638 | 45.6672 | 45.6188 | 45.8860 | 45.2660 47.3383 46.3835 | 75.0000
P(G2) 98.53982 | 98.7469 | 98.5401 | 98.5401 | 98.5398 | 98.5479 98.5398 | 104.1223 | 112.3800
P(G3) 112.67349(112.0000( 112.6735 | 112.6727 | 112.6741 | 112.6786 | 112.6735 | 64.3729 | 30.0000
P(G4) 209.81582 |208.5113| 209.8158 | 209.8154 | 209.8141 | 209.8284 | 209.81582 | 246.1853 | 250.0000
P(G5) 94.14597 | 92.6909 | 94.0532 | 94.1027 | 93.8249 | 94.4121 92.3718 98.9736 | 93.2701
P(G6) 40.00000 | 40.0000 [ 40.0000 | 40.0001 | 40.0002 | 40.0062 40.0000 40.7401 | 40.1585
H(G5) 27.40126 | 35.9704 | 27.9472 | 27.6600 | 29.2914 | 25.8365 37.8467 0.0000 32.5655
H(G6) 75.00000 | 75.0000 | 74.9996 | 74.9987 | 75.0002 | 74.9970 74.9999 66.7100 | 72.6738
H(G7) 47.59874 | 39.0000 [ 47.0532 | 47.3413 | 45.7084 | 49.1666 37.1532 83.2900 | 44.7606
>P(G) (MW) [600.73910|600.7128| 600.7498 | 600.7498 | 600.7391 | 600.7392 | 600.73922 | 600.7777 | 600.8086
PLm (MW) | 0.73910 | 0.7128 | 0.7498 0.7497 0.739%4 0.7392 0.73922 0.7777 0.8086
(mﬁ) 150.00000 (149.9704( 150.0000 | 150.0000 | 150.0000 | 150.0001 | 149.9998 | 150.0000 | 149.9999
TC ($/h) 10094.21766 | 9912.6928 | 10094.2407 | 10094.2670 | 10094.3529 | 10094.8384 | 10100.3164 | 10111.1501 | 10325.3339
CFEgetcl)me 2.507 2.578 2.5681 2.4203 3.06 2.86 3.25 N/A 3.29
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Fig. 3 Convergence characteristics of the proposed HDE-MU
in comparison with DE-MU.

proposed HDE-MU, gravitational search algorithm (GSA) [2],
opposition-based group search optimization (OGSO) [9],
group search optimization (GSO) [4], oppositional teaching
learning based optimization (OTLBO) [18], TLBO [18],
particle swarm optimization with time varying acceleration
coefficients (TVAC-PSO) [19], krill herd algorithm (KHA)
[20] and classic PSO (CPSO) [19]. Although results of table 1
all located in the Heat-Power feasible operation region, the
results of GSA [2], TLBO [18], TVAC-PSO [19] and CPSO
[19] are infeasible solutions, because their heat outputs didn’t
match the heat demand (Hyq = 150MWsth) that will cause an
unbalance of system’s heat demand. By investigating the
results presented in Table 1, it is observed that the best total
cost utilizing HDE-MU is 10,094.21766

4
qapatd

HDE-MU

1.01} L % %

o4 %
o X il " S R P S

1.009 b

1 .008 1 1 1 1 1 L 1 1 1
0 5 10 15 20 25 30 35 40 45 50

No. of trials

Fig. 4 Distribution of the minimum costs in 50 trials.

$/h, which is much less than the best results previously
reported in TVAC-PSO [19], KHA [20] and CPSO [19], and
also slightly better than the best results of OGSO [9], GSO [4],
OBTLBO [18] and TLBO [18]. As seen from the best
solution of HDE-MU listed in Table 1, the power output is
600.73910 MW, the heat output is 150 MWth and the
transmission loss is 0.73910MW. Apparently, the equality
constraints of heat and power demands are fully satisfied.
Therefore, the result obtained from the proposed HDE-MU is
an optimal and feasible solution. According to the absolute
CPU time of different methods listed in the Table 1, the
proposed HDE-MU is faster than most of the compared
algorithms, but slightly slower than GSO [4]. Consequently,
the HDE-MU is not only supplying the exact total of heat and
power, but also has the less CPU time than most approaches
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for the cogeneration system. Table 1 reveals that the
HDE-MU is a satisfactory algorithm for solving the CHPED
problem. The convergence characteristics of the proposed
method in comparison with DE with MU (DE-MU) for this
real example are depicted in Fig. 3, and the distribution of the
minimum costs after 50 trials by the HDE-MU is plotted in
Fig. 4. It can be observed that the worst, average and best
costs are very close. The small standard deviation again
confirms the stability of the proposed HDE-MU.

V.CONCLUSIONS

The HDE-MU for solving the CHPED problem has been
proposed herein. Complication of the CHPED problem lies in
the constraints imposed by the mutual dependencies of
multi-demand and Heat-Power capacity. The HDE helps the
proposed method efficiently search and refined exploit. The
MU helps the proposed method avoid deforming the ALF and
resulting in difficulty of solution searching. The proposed
algorithm integrates the HDE and the MU that has the merits
of taking a wide range of penalty parameters and a small
population. A practical CHPED system with transmission
losses and valve-point effects is used to compare the proposed
HDE-MU with eight reported methods. Simulation results
demonstrate that the proposed algorithm has more advantages
for solving the CHPED problem than the previous methods.
The contributions of this paper are the MU effectively handles
the Heat-Power feasible region constraints, the HDE
efficiently searches the optimal solutions in the economic
dispatch process, and the author provides a valid and
efficacious algorithm for the CHPED problem.
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