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Abstract—This paper presents a hybrid differential evolution 

with multiplier updating (HDE-MU) to solve the complex 

combined heat and power economic dispatch (CHPED) 

problems. Transmission losses and valve-point effects of 

conventional thermal generators are taken into account. The 

hybrid differential evolution (HDE) has the ability to efficiently 

search and actively explore solutions. Multiplier updating (MU) 

is introduced to avoid deforming the augmented Lagrange 

function (ALF), which is adopted to manage system constraints 

of the CHPED problem. The proposed HDE-MU integrates the 

HDE with the MU. A practical CHPED system is employed to 

demonstrate that the proposed algorithm has the benefits of 

straightforwardness; ease of implementation; better 

effectiveness than the previous methods, and the requirement 

for only a small population when applied to the CHPED 

operation. 

 

Index Terms—Combined heat and power, differential 

evolution, economic dispatch, multiplier updating. 

 

I. INTRODUCTION 

The conversion of fossil fuel into electricity is not an 

efficient process. Even the energy efficiency of the most 

modern combined cycle plants are between 50 and 60% 

efficient [1].  Most of the energy wasted in the conversion 

process is heat. Recently, combined heat and power (CHP) 

units have played an increasingly important role in the utility 

industry [2~ 6]. Complexity arises if one or more units 

produce both power and heat. Such a case, both the power 

demand and the heat demand must be satisfied. Cogeneration 

units provide both electrical power and heat to customers. The 

heat production capacity of most cogeneration units, depend 

on the power generated, and vice versa. The mutual 

dependency of multiple-demand and Heat-Power capacity of 

those units introduce complexities in the integration of 

cogeneration units into the economic dispatch problem. The 

CHPED problem even may be more complicated if 

transmission losses and valve-point effects are taken into 

account. Solving such a complex optimization problem 

requires powerful techniques. Non-linear optimal algorithms, 

such as dual and quadratic programming [7], and gradient 

descent approaches, such as Lagrangian relaxation [8], have 

been applied for solving CHPED problems. However, these 

methods cannot handle non-smooth non-convex fuel cost 

function of the conventional thermal generator. The advent of 

stochastic search algorithms has overcome this problem for 

solving CHPED problems. Gravitational search algorithm 

(GSA) [2], cuckoo search algorithm [3], group search 

optimization (GSO) [4], exchange market algorithm [5], real  

coded genetic algorithm [6], opposition-based group search  
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optimization (OGSO) [9], Improved ant colony search 

algorithm [10], evolutionary programming [11], genetic 

algorithm [12], harmonic search algorithm [13], hybrid 

particle swarm optimization [14], self-adaptive real-coded 

genetic algorithm [15], novel selective particle swarm 

optimization [16], mesh adaptive direct search algorithm [17], 

oppositional teaching learning based optimization (OTLBO) 

[18], particle swarm optimization with time varying 

acceleration coefficients (TVAC-PSO) [19]  and krill herd 

algorithm (KHA) [20] have been applied to solve the CHPED 

problems. The results obtained by the proposed algorithm, 

involving HDE and MU, have been compared with the 

existing methodologies reported in recent literature. 

Storn and Price [21] developed the Differential evolution 

(DE) which immediately gained popularity as a robust 

evolutionary algorithm. DE has been widely applied to the 

optimization problems in the power systems [22~ 26]. 

Throughout the years, DE has been used extensively for 

optimization problems, many results of which are the best 

compared to other standard methodologies. However, it has 

problems of converging onto local optimal solutions. A 

migration [27] is embedded in the proposed HDE to 

overcome such drawbacks for solving CHPED problems. The 

migration operation is included in the HDE to regenerate a 

newly diverse population, which prevents individuals from 

gradually clustering and thus greatly increases the amount of 

search space explored for a small population.  

The rest of this paper is organized as follows: in the next 

section, the basic equations governing CHPED have been 

briefly outlined. Section III explains the basic framework of 

the proposed algorithm involving HDE and MU. Section IV 

describes the test system, compares the results obtained by 

HDE-MU with other methods and provides the analysis of the 

obtained results. Finally, the conclusion is drawn in Section 

V. 

II.  PROBLEM FORMULATION 

A. Objective function  

The CHPED problem is to determine the unit power and 

heat production so that the system’s production cost is 

minimized while the power and heat demands and other 

constraints are met. It can be mathematically stated as, 
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and where P stands unit power generation; H is unit heat 

production; Costi(Pi) with i=1,2,…, np represents the cost 

function of the i
th

 power-only unit in $/h and ai, bi, and ci are 

cost coefficients of generator i, and ei and fi are fuel cost 

coefficients of unit i with valve-points effects; Costj(Hj,Pj) 

with j=1,2,…, nb is the fuel cost function of the j
th

 CHP unit in 

$/h and aj, bj, cj, dj, rj, and wj are cost coefficients of unit j; 

Costk(Hk) with k=1,2,…, nh represents the cost function of the 

k
th

 heat-only unit in $/h and ak, bk, and ck are cost coefficients; 

np, nb, and nh denote the number of power-only units, 

co-generation units, and heat-only units, respectively; 

subscripts of i, j, and k are used for above mentioned unit; it 

should be mentioned that (Pi, Pj) and (Hj, Hk) are the output 

active power (in MW) and heat production (in MWth), 

respectively.  

B. Constraints 

Subject to the equilibrium constraints of electricity and 

heat production, and the capacity limits of each unit. Power 

and heat balance equations are represented by equality 

constraints (5) and (6), respectively.  
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Where Pd and Hd are system power and heat demands, 

respectively. In general, the transmission losses (PLm) of (5) 

can be calculated through the power generation of all units 

which is known as B-matrix approach (kron’s loss formula 

[1]). P
min

 and P
max

 are unit power capacity limits; h
min

 and h
max

 

are unit heat capacity limits.  

The CHPED problem clearly introduces the complication 

of more constraints than in required pure power economic 

dispatch problem. The insufficiencies difficulties with 

conventional methods thus follow from the fact that CHPED 

is a highly constrained optimization problem. 

III. THE PROPOSED HDE-MU 

A. Differential evolution (DE) 

The DE algorithm is one of the population-based 

optimization algorithms. The steps for implementing DE are 

as follows [21]: 

Step 1: Initial population: A population of NP initial 

solutions randomly distributed in the nc dimensional search 

space of the optimization problem, are initiated. The DE uses 

Np vectors of variables x in the optimization problem, namely, 

 p
G
i

G Nixx ,...,1,  , as a population in generation G. For 

convenience, the decision vector, xi, is represented as 

 injii C
xxx 1

. Here, the decision variable, xji is directly 

coded as a real value within its bounds of ),( maxmin
jj xx . Each 

individual is generated as follows: 

 

Pc

jjj
G

G
ji

Ninj

xxrandxx

,...,2,1,,...,2,1

)11()(*)1,0( minmaxmin

0




  

 

Where rand(0, 1) is a random number between 0 and 1.  

Step 2: Mutation operator: In mutation step, for each 

individual xi (target vector) of the new population, three 

different individuals xr1, xr2, and xr3 (r1≠ r2≠ r3≠ i) are 

pseudo-randomly extracted from the population to generate a 

new vector as: 
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Where ]2,0[F  is a uniformly distributed random number 

which controls the length of the population exploration vector 

(xr2 - xr3). 

Step 3: Crossover operator: After mutation step, the 

crossover operator, according to the following equation, is 

applied on the mutation vector Zji and the vector xji to generate 

the trial vector Uji, for increasing population diversity of the 

mutation vector. 
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Where ]1,0[CR  is known as the crossover rate which is a 

constant. 

Step 4: Selection & evaluation operator: The selection & 

evaluation process is repeated for each pair of target/trial 

vectors using the evaluation function F(Uji) to compare with 

the evaluation function value F(xji), and the better one will be 

selected to be a member of the DE population generation for 

the next iteration (
1G

jix ). 

B. HDE 

In HDE [22~ 26], the one-to-one competition will have a 

faster convergence speed to give a higher probability toward a 

global optimum with much less computation time. It can use a 

small population in the evolutionary process to obtain a global 

solution. Generally, Evolutionary optimization involves two 

critical issues evolutionary direction and population diversity. 

As the evolutionary direction is effective in searching, the 

strong evolutionary direction can reduce the computational 

burden and increase the probability of rapidly finding an 

(possibly local) optimum. As population diversity is increased, 

the genotype of the offspring differs more from the parent. 

Accordingly, a highly diverse population can increase the 

probability of exploring the global optimum and prevent a 

premature convergence to a local optimum. These two 

important factors are here balanced by employing the 
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migration [27] into HDE that can determine an efficacious 

direction in which to search for a solution and simultaneously 

maintain an appropriate diversity for a small population. The 

migrant individuals are generated based on the best 

individual, ),...,,( 11
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xxxx , by non-uniformly 

random choice. Genes of the i
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 individual are regenerated 

according to  
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where j =1, …, Cn ; i =1, …, Np, r1 and  are random numbers 

in the range of [0,1]. The migration may be performed if only 

the best fitness has not been improved for over 500 

generations running, and the migrant population will not only 

become a set of newly promising solutions but also easily 

escape the local extreme value trap. More details of the HDE 

have shown in [22~ 26]. 

C. MU 

Michalewicz et al. [28] surveyed and compared several 

constraint-handling techniques used in evolutionary 

algorithms. Among these techniques, the penalty function 

method is one of the most popularly used to handle 

constraints. In this method, the objective function includes a 

penalty function that is composed of the squared or absolute 

constraint violation terms. Powell [29] noted that classical 

optimization methods include a penalty function have certain 

weaknesses that become most serious when penalty 

parameters are large. More importantly, large penalty 

parameters ill condition the penalty function so that obtaining 

a good solution is difficult. However, if the penalty 

parameters are too small, the constraint violation does not 

contribute a high cost to the penalty function. Accordingly, 

choosing appropriate penalty parameters is not trivial. Herein, 

the MU [30] is introduced to handle this constrained 

optimization problem. Such a technique can overcome the ill 

conditioned property of the objective function. Considering 

the nonlinear problem with general constraints as follows: 

Where hk (x) and gk (x) stand for equality and inequality  
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constraints, respectively. 

The augmented Lagrange function (ALF) [29] for 

constrained optimization problems is defined as: 
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where k and k are the positive penalty parameters, and the 

corresponding Lagrange multipliers ),,( 1 em   and 

),,( 1 im  > 0 are associated with equality and 

inequality constraints, respectively. 

The contour of the ALF does not change shape between 

generations while constraints are linear. Therefore, the 

contour of the ALF is simply shifted or biased in relation to 

the original objective function, f(x). Consequently, small 

penalty parameters can be used in the MU. However, the 

shape of contour of La is changed by penalty parameters while 

the constraints are nonlinear, demonstrating that large penalty 

parameters still create computational difficulties. Adaptive 

penalty parameters of the MU are employed to alleviate the 

above difficulties. More details of the MU have shown in 

[30]. 

D. The proposed HDE-MU 

Figure 1 displays the flow chart of the proposed algorithm, 

which has two iterative loops. The ALF is used to obtain a 

minimum value in the inner loop with the given penalty 

parameters and multipliers, which are then updated in the 

outer loop toward producing an upper limit of La. When both 

inner and outer iterations become sufficiently large, the ALF 

converges to a saddle-point of the dual problem [28]. 

Advantages of the proposed HDE-MU are that the HDE 

efficiently searches the optimal solution in the economic 

dispatch process and the MU effectively tackles system 

constraints. 
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IV. SYSTEM SIMULATIONS 

This section considers a practical CHPED system which 

contains four conventional power units, two cogeneration 

units, and one heat-only unit. The system power demand (Pd) 

and heat demand (Hd) of this CHPED problem are 600MW 

and 150MWth, respectively. The valve-point effects and 

transmission loss are both considered, and this example used 

the linear boundary of the Heat-Power feasible region for 

cogeneration units. The associated data of this CHPED 

problem are the same as [19].  

Figure 2 clear shows the feasible power and heat output 

region of cogeneration unit 1 and 2, and demonstrates 

correlations between the power and heat outputs.  

The MU algorithm was used in HDE to hand the equality 

and inequality constraints. The computation was implemented 

on a personal computer (CPU clock 2.0GHz with 4G Ram) in 

FORTRAN-90 language. Setting factors used in this example 

are as follows; the population size Np is set as 5 for HDE-MU. 

The iteration numbers of outer loop and inner loop are set to 

(outer, inner) as (20, 3000). The implementation of the 

proposed algorithm for this example can be described as 

follows: 
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This minimum cost problem consists of one objective 

function with nine variable parameters, (P1, P2, P3, P4, P5, P6, 

H5, H6, and H7), two equality constraints, (h1 and h2), and six 

inequality constraints, (g1~ g6), in the Heat-Power available 

region. 

This CHPED example is used to illustrate the effectiveness 

of the proposed HDE-MU with respect to the quality of the 

solution obtained. This test shows the validly and 

practicability of general use for the CHPED problems. Table 

1 compares nine computational results obtained from the 

 

Table 1:  Comparison of the proposed HDE-MU with previous methods 

Methods 

 

Items 

HDE-MU GSA [2] OGSO [9] GSO [4] 
OBTLBO 

[18] 
TLBO [18] 

TVAC-PSO 

[19] 
KHA [20] CPSO [19] 

P(G1) 45.56400 48.7638 45.6672 45.6188 45.8860 45.2660 47.3383 46.3835 75.0000 

P(G2) 98.53982 98.7469 98.5401 98.5401 98.5398 98.5479 98.5398 104.1223 112.3800 

P(G3) 112.67349 112.0000 112.6735 112.6727 112.6741 112.6786 112.6735 64.3729 30.0000 

P(G4) 209.81582 208.5113 209.8158 209.8154 209.8141 209.8284 209.81582 246.1853 250.0000 

P(G5) 94.14597 92.6909 94.0532 94.1027 93.8249 94.4121 92.3718 98.9736 93.2701 

P(G6) 40.00000 40.0000 40.0000 40.0001 40.0002 40.0062 40.0000 40.7401 40.1585 

H(G5) 27.40126 35.9704 27.9472 27.6600 29.2914 25.8365 37.8467 0.0000 32.5655 

H(G6) 75.00000 75.0000 74.9996 74.9987 75.0002 74.9970 74.9999 66.7100 72.6738 

H(G7) 47.59874 39.0000 47.0532 47.3413 45.7084 49.1666 37.1532 83.2900 44.7606 

ΣP(G) (MW) 600.73910 600.7128 600.7498 600.7498 600.7391 600.7392 600.73922 600.7777 600.8086 

PLm (MW) 0.73910 0.7128 0.7498 0.7497 0.7394 0.7392 0.73922 0.7777 0.8086 

ΣH(G) 

(MWth) 
150.00000 149.9704 150.0000 150.0000 150.0000 150.0001 149.9998 150.0000 149.9999 

TC ($/h) 10094.21766 9912.6928 10094.2407 10094.2670 10094.3529 10094.8384 10100.3164 10111.1501 10325.3339 

CPU time 

(Sec) 
2.507 2.578 2.5681 2.4203 3.06 2.86 3.25 N/A 3.29 
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proposed HDE-MU, gravitational search algorithm (GSA) [2], 

opposition-based group search optimization (OGSO) [9], 

group search optimization (GSO) [4], oppositional teaching 

learning based optimization (OTLBO) [18], TLBO [18], 

particle swarm optimization with time varying acceleration 

coefficients (TVAC-PSO) [19], krill herd algorithm (KHA) 

[20] and classic PSO (CPSO) [19]. Although results of table 1 

all located in the Heat-Power feasible operation region, the 

results of GSA [2], TLBO [18], TVAC-PSO [19] and CPSO 

[19] are infeasible solutions, because their heat outputs didn’t 

match the heat demand (Hd = 150MWth) that will cause an 

unbalance of system’s heat demand. By investigating the 

results presented in Table 1, it is observed that the best total 

c o s t  u t i l i z i n g  H D E - M U  i s  1 0 , 0 9 4 . 2 1 7 6 6  

 
 

$/h, which is much less than the best results previously 

reported in TVAC-PSO [19], KHA [20] and CPSO [19], and 

also slightly better than the best results of OGSO [9], GSO [4], 

OBTLBO [18] and TLBO [18]. As seen from the best 

solution of HDE-MU listed in Table 1, the power output is 

600.73910 MW, the heat output is 150 MWth and the 

transmission loss is 0.73910MW. Apparently, the equality 

constraints of heat and power demands are fully satisfied. 

Therefore, the result obtained from the proposed HDE-MU is 

an optimal and feasible solution. According to the absolute 

CPU time of different methods listed in the Table 1, the 

proposed HDE-MU is faster than most of the compared 

algorithms, but slightly slower than GSO [4]. Consequently, 

the HDE-MU is not only supplying the exact total of heat and 

power, but also has the less CPU time than most approaches 

for the cogeneration system. Table 1 reveals that the 

HDE-MU is a satisfactory algorithm for solving the CHPED 

problem. The convergence characteristics of the proposed 

method in comparison with DE with MU (DE-MU) for this 

real example are depicted in Fig. 3, and the distribution of the 

minimum costs after 50 trials by the HDE-MU is plotted in 

Fig. 4. It can be observed that the worst, average and best 

costs are very close. The small standard deviation again 

confirms the stability of the proposed HDE-MU. 

V. CONCLUSIONS 

The HDE-MU for solving the CHPED problem has been 

proposed herein. Complication of the CHPED problem lies in 

the constraints imposed by the mutual dependencies of 

multi-demand and Heat-Power capacity. The HDE helps the 

proposed method efficiently search and refined exploit. The 

MU helps the proposed method avoid deforming the ALF and 

resulting in difficulty of solution searching. The proposed 

algorithm integrates the HDE and the MU that has the merits 

of taking a wide range of penalty parameters and a small 

population. A practical CHPED system with transmission 

losses and valve-point effects is used to compare the proposed 

HDE-MU with eight reported methods. Simulation results 

demonstrate that the proposed algorithm has more advantages 

for solving the CHPED problem than the previous methods. 

The contributions of this paper are the MU effectively handles 

the Heat-Power feasible region constraints, the HDE 

efficiently searches the optimal solutions in the economic 

dispatch process, and the author provides a valid and 

efficacious algorithm for the CHPED problem. 
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