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- P Conectedness in L-Bitopological spaces

FangL.i Li, Hongkui Li, Tao Li

Abstract— This paper introduce open sets and P — closed
sets into L-Bitopological spaces, and based on this we introduce
some related definitions and theorems about g — p closed set and
B—Popen sets . Furthermore, we give a new concept about
p-p local-connectivity .Then, it point out pg_p
local-connectivity has two properties of topological invariance

and finitely productive property and proves the other relevant
theories.

Index Terms—  L- bitopological spaces,
5 - plocal-connectivity, topological invariance, finitely

productive property
. INTRODUCTION

Since J. C. Kelly introduced the concept of double
topological space, many scholars has a great interest about
researching dual topology, then introduced L -bitopological
spaces on the basis of L-topological space, and makes a
long-term study of the separation .Connectivity is an
important branch of fuzzy topology, the domestic scholars
have studied the variety of connectivity, such as
@ —connectivity[3], connectivity[4], stratified connectedness
[5], disconnectedness branches e .c. Due to the concept of
connectivity is closely related to geometric closure , many
connectivity is also defined based on the definition of
different closure concepts. In this paper,we
introduced s_p open sets and p-p closed sets

inL-Bitopological spaces on the basis of 53— p open sets and
5 — P closed sets .In this case ,we defined a new connectivity

in L- Dbi-topological spaces which is called
/3 — P local-connectivity ,and the study of the connectivity has

gotten some good properties.
Il. PRELIMINARY KNOWLEDGE
A. L-bitopological spaces

Definition 2.1: Let L be a F lattice ,that is a completely
distributive lattice with the reverse involution ,let X be a
common set and let L* is a set that contains the whole
L — fuzzysets on X ,0 and 1 respectively expressed the

minimum and maximum in L , m(L) and m*(L*)
respectively expressed all molecules of L and L* ,we record
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L—btsas L — bitopological space and Ag, as the closure
of A in(LX,5,)[6]-

B. Final Stage The Related Defines And Conclusion About
P —open set And p — close Set

Definition 2.2: Let (L*,5) be L—bts, Ae L and
recordas P — open set,if and only if have open set U ,makes

A<U <A ;If Aisa p—open set, we call A’ is a
p — close set .The whole p — open sets in (LX ,5) are
denoted by LPO(LX*),and the whole P — close sets are
denoted by LPC(L* )[7].

Note: The close setin L —bts mustbe p — close set,
and on the contrary generally does not set up.

Lemma 2.1: Let (LX ,5) be L—bts , then
s LPo(LX), 8" LP(L).

Definition  2.3:  Let
AclX BelX , then:

(*,6) be L-bts |,

(a)The union of all p — open sets which contained by
A iscalled internal of A s LE — p*,recordas A™ thatis

A =B eLPO(LX B < Af.

(b) The union of all p — close sets which contained by

A is called external of A s LE — p*,record as A" that
is

A< ={BeLpc(X)a<B)
Lemma 2.2: Let (L*,5) be L—bts, A,B e LX then
@A <A™ <ASAC <A,
(0)1f Ac5ALPC(LX ) then A s'.
©If Aedn LPO(LX* ),then Aeco.
(d) If A< B then A" <B" A" <B"™.

€ (AvB)“

(f) The arbitrary intersection of P — closed sets is
p — closed set,and the arbitrary intersection of P — open
sets is P — open set.

=A“vB*,(AvB)* = A" vB™.
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C. Figures The Introduction of S — p open set And
3 — pclose set

According to the preparation,we introduce g_ popen
set and g — pclose set into L —bitopological spaces,and give
some related properties and theorems [7] about 5 — p open
set and B — pclose set on the basis of p — closed set and
p — open set,and give the corresponding proof.

Definition 3.1: Let (LX ,5) be
L—Dbts,BeL,Ac " record as
1, (A)={x e X|A(X)> g} let §eL—{0}if
Iﬁ(A*“)zlﬂ(A) , thencall A as g— p openset;If A" is
B — p close set,then we call A as S — p open set.

Lemma 3.1:Let (LX,(S) be L—bts, Ac L if A is
[ —close setthen Ais f— p close set.

Proof: If A is [ — close set,then about
pelL-{0}, Ac L when y > S there s
Iﬁ(A’): Iﬂ(A),due to A™" <A™ thenthere is
Iﬂ(A*“)z I,(A)soA isa f—p close set.

Lemma 3.2:Let (LX,5) be L—bts, AeL*,if Aisa
[ —open setthen Ais S — P open set.

Lemma 3.3:Let (Lx,é) be L—bts, Ae L* If Aisa
p — close set is the necessary and sufficient condition of
Ais 1— p close set.

Proof :

"<" Clearly established.

"=" Due to "A" is 1-p close setso
VA1 =0, (A )=1,(A)

If A" #A then there is Xe X cause

A (x)> A(X) marked B, =A(x)>0 then

X¢l 4 (A*“)is conflict with (*) ,s0 A" = A thatis A

is f— p close set.

Lemma 3.4:Let (L*,5) be
L-bts, A, Be L*, geL-{0} then

(a) IfA<B.thenl_(A)c|,(B).

(b) I,(AAB)=1_(A)uUl,(B).
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L. — Bitopological spaces

6 1, (A vB<)=1(a<)ul,(B).
D. - plocal-connectivity

1.Definitions about 4 — p local-connectivity

Definition 4.1.1:Let (¥, 5)be
L—bts,ABeLl*,aeL-{0} ,if A" AB< f'and
AAB™ < ' thencall A and B are g— pinsular.

Definition 4.1.2:Let (L*,5)be L—bts, SeL* if
there is no A Bel” ,to make A and B are
P —pinsularand AVB=S,A> B",B> g then call S
is Connected set in (LX ,5).Particularly, when 1, which is
in L is B—p Connected
set;Otherwise,call (LX ,5) is — p disconnected space.

the Maximum element

Definition 4.1.3: Let (L*,5)be L—bts, x e L* if
every neighborhood of A contains a g—p connected

neighborhood \Y} ,then call X is
p-p local-connectivity,Otherwise,call X is  not

/B — p local-connectivity([g].

Definition 4.1.4: If every point of (LX ,5) is
p—p local-connectivity,then (LX ,5) is
[ — p local-connected space.

2 .Basic properties of S — p local-connectivity

call

Theorem 4.2.1: The local connected space must be
£ — p local-connected space.

Proof : From the definition of local-connected spaces
,we can know that every neighborhood of A contains a
B - p connected neighborhood V the Vv is open set .By

definition 4.2 in the literature [3] we can know that the
connected open set must be S — p open set of V .As for

vx e L* |if every neighborhood of A contains a
L —p connected neighborhood V then (x,5) s

[ — p local-connected space according to definition 4.1.4.
On the contrary, does not necessarily set up.

Theorem 4.2.2: Let (LX ,5) be L—Dbts, then the
following conditions are equivalent:

(@) L*isa p — p local-connected space.

(b)Arbitrary g — p connected branch of L* ’s arbitrary
[ — popensetisa — popen set.

(c) L™ is a connected base.

Proof :

(@)= (b):

Let U is a arbitary S —p open set of
/3 — p connected space,c is arbitrary £ — p connected branch

of U ,as for arbitrary xeceU ,then U, eU .And because
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L* is p—p local-connected,there is a connected

neighborhood V ,and V also
neighborhood of subspace U [9].

is f—p connected
=(c):
Let « isaset family that formed by all #— p open

set of L* then & is a base of L* ,also because - p
connected branch is g—p connected subsetthen o is

connected base of L* .
=>(a) :

Let L* has a #— p connected base & ,then each
member of o are all g—p connected setsas for

Vxe L*,make ¢, ={AcpixeB}then xea, ca that @,

is f—p connectedwe can know X s
[ — p local-connected by the definition 4.1.3.
Theorem 4.2.3: Let (Lxl,él) is a

B —p local-connected space, (X,T) is a topological
space, f : L* — X is a continuous open mapping,then we
can construct that (LX2,52) is a B - p local-connected
space by (X,T).

Proof :Let L* is a 8 — p local-connected space,
then we can know there isa 8 — p connected base in L*
by the definition 4.2.2.As for f is a continuous open
mapping,to make B, ={f(B)B e A} {then
vBe g, f(B), VBe g, f(B)is S — p connected open set
of X ;s0 S, is S — p connected open set family of X .As

for arbitrary S — p opensetof X , f is #— p connected
and surjection,so:

= U 1(B)

Bep,

A=f(f(A)= f[BLEJmBj

Then S, isa f— p open connected base of X .
By the theorem 4.2.2,we can know (sz,62) can

structured by (X,T) is #— p connected space .

We call the nature is topological invariance which is
can keep the same nature under  — p continuous mapping

in topological space.

Theorem 4.2.4: If Ly , X, , .. L%, are also
B — p local-connected space,then L* =L%1x L*2 x...x L,
is  — p local-connected space too.

Proof :Let in(i =12,.., n) is f—p connected
space,from theorem 4.2.2, we can know that thereisa g— p

X
connected base V,(i=12..n) in L i then make
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V =, xV, x..xV M, eV(i=12,.,n)} and
literature [10],we can know g — p connected nature is finitely

from

productive property ,so V is a g—p connected base of

product space L* .Also,from theorem4.2.2,we can know that
product space L* =L*;ixL*;x..xL*, is also a
5 - p local-connected space.

Some properties P of topological spaces are called finite
integrable properties, if there are N >1 arbitrary topological
space L*; , L*2 , ...L*, have property P ,and contained
product space L* =L*1xL*;x...xL*, also have
property P ,then S — p local-connected nature is finitely
productive property.
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