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 

Abstract— This paper introduce open sets and p closed 

sets into L Bitopological spaces, and based on this we introduce 

some related definitions and theorems about P closed set and 

P open sets . Furthermore, we give a new concept about 

P local-connectivity .Then, it point out P  

local-connectivity has two properties of topological invariance 

and finitely productive property and proves the other relevant 

theories. 

 

     Index Terms—      L   bitopological spaces,  

p local-connectivity,    topological invariance, finitely 

productive property 

I. INTRODUCTION 

  Since J. C. Kelly introduced the concept of double 

topological space, many scholars  has a great interest about 

researching dual topology, then introduced L bitopological 

spaces on the basis of L topological space, and makes a 

long-term study of the separation .Connectivity is an 

important branch of fuzzy topology, the domestic scholars 

have studied the variety of connectivity, such as 

 connectivity[3], connectivity[4], stratified connectedness 

[5], disconnectedness branches e .c. Due to the concept of 

connectivity is closely related to geometric closure , many 

connectivity is also defined based on the definition of 

different closure concepts.   In this paper,we 

introduced P open sets and P closed sets 

in L Bitopological spaces on the basis of P open sets and 

P closed sets .In this case ,we defined a new connectivity 

in L bi-topological spaces which is called 

P local-connectivity ,and the study of the connectivity has 

gotten some good properties. 

II. PRELIMINARY KNOWLEDGE 

A. L bitopological spaces 

Definition 2.1: Let L  be a F lattice ,that is a completely 

distributive lattice with the reverse involution ,let X  be a 

common set and let XL is a set that contains the whole 

fuzzyL  sets on X ,0 and 1 respectively expressed the 

minimum and maximum in L ,  LM  and  XLM   

respectively expressed all molecules of L  and 
XL ,we record  
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btsL as L bitopological space and 
1

A  as the closure 

of A  in  1,XL  6 . 

B. Final Stage The Related Defines And Conclusion About 

p open set And p close Set 

Definition 2.2: Let  ,XL  be btsL ,
XLA and 

record as p open set ,if and only if have open set U ,makes 

 AUA ;If A  is a p open set, we call A  is a 

p close set .The whole p open sets in  ,XL  are 

denoted by  XLLPO ,and the whole p close sets are 

denoted by  XLLPC  7 . 

Note: The close set in btsL  must be p close set, 

and on the contrary generally does not set up. 

Lemma 2.1: Let  ,XL  be btsL  , then 

   **

, XX LLPCLLPO   . 

Definition 2.3: Let  ,XL  be btsL , 

*XLA ,
*XLB ，then: 

 a The union of  all p open sets which contained by 

A  is called internal of A ’s 
 pLE ,record as A ,that is  

  ABLLPOBA X  ** . 

 b  The union of  all p close sets which contained by 

A  is called external of A ’s  pLE ,record as 
A ,that 

is  

  BALLPCBA X  **  

Lemma 2.2: Let  ,XL  be btsL ,
*

, XLBA  ,then 

(a)
  AAAAA

. 

(b) If  

 XLLPCA  ,then  A . 

(c) If  

 XLLPOA  ,then A . 

(d) If BA  ,then 
  BA ,

  BA . 

 (e)   
 BABA ,   

 BABA . 

(f) The arbitrary intersection of p closed sets is 

p closed set,and the arbitrary intersection of p open 

sets is p open set. 
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C. Figures The Introduction of p open set And 

p close set 

According to the preparation,we introduce p open 

set and p close set into L bitopological spaces,and give 

some related properties and theorems  7  about p open 

set and p close set on the basis of p closed set and 

p open set,and give the corresponding proof. 

Definition 3.1: Let  ,XL  be 

btsL , L , XLA ,record as 

      xAXxAl ,let  0L ,if 

   AlAl   ，then call A  as p  open set;If A  is 

p  close set,then we call A  as p  open set . 

Lemma 3.1:Let  ,xL  be btsL , XLA ,if  A  is 

 close set,then A is p  close set. 

Proof: If A  is  close set,then about 

 0L ,


 XLA ,when   ,there is 

   AlAl  
,due to 

  AA ,then there is 

   AlAl  
,so A  is a p  close set. 

Lemma 3.2:Let  ,xL  be btsL , XLA ,if A  is a 

 open set,then A is p  open set. 

Lemma 3.3:Let  ,xL  be btsL ,
XLA ,If A is a 

p  close set is the necessary and sufficient condition of 

A is p1 close set. 

Proof : 

    ""  Clearly established. 

    ""  Due to "" A is p1 close set,so 

   AlAl   ,01  

If AA 
,then there is Xx ,cause 

   XAxA 
,marked   00  xA ,then 

  Alx
0

is conflict with （*）,so AA 
,that is A  

is p  close set. 

 Lemma 3.4:Let  ,xL  be 

btsL , XLBA , ,  0L ,then 

（a）If BA  ,then    BlAl   . 

（b）      BlAlBAl   . 

（c）       
 BlAlBAl  . 

（d）       
 BlAlBAl  . 

（e）        BlAlBAl 
. 

（f）        BlAlBAl 
. 

D. p local-connectivity 

1.Definitions about p local-connectivity 

Definition 4.1.1:Let  ,XL be 

btsL , XLBA , ,  0L ，if   BA and 

  BA ,then call A  and B  are p insular. 

Definition 4.1.2:Let  ,XL be btsL , 
XLS  ,if 

there is no XLBA , ,to make  A  and B  are 

p insular,and SBA  ,  A ,  B ,then call S  

is Connected set in  ,XL .Particularly, when 
X1  which is 

the Maximum element in 
XL  is p Connected 

set;Otherwise,call  ,XL  is p  disconnected space. 

Definition 4.1.3: Let  ,XL be btsL , 
XLx ,if 

every neighborhood of A contains a p connected 

neighborhood V ,then call x is 

p local-connectivity;Otherwise,call x  is not 

p local-connectivity 8 . 

Definition 4.1.4: If every point of  ,XL  is 

p local-connectivity,then call  ,XL  is 

p local-connected space. 

2 .Basic properties of p local-connectivity 

   Theorem 4.2.1: The local connected space must be 

p local-connected space. 

Proof : From the definition of  local-connected spaces 

,we can know that every neighborhood of A contains a 

p connected neighborhood V ,the V is open set .By 

definition 4.2 in the literature  3 ,we can know that the 

connected open set must be p  open set of V .As for 

XLx ,if every neighborhood of A contains a 

p connected neighborhood V ,then  ,XL  is 

p local-connected space according to definition 4.1.4. 

On the contrary, does not necessarily set up. 

Theorem 4.2.2: Let  ,XL be btsL , then the 

following conditions are equivalent: 

(a) XL is a p local-connected space. 

(b)Arbitrary p connected branch of XL ’s arbitrary 

p open set is a p open set. 

(c) XL is a connected base. 

Proof : 

(a)(b): 

    Let U  is a arbitrary p open set of 

p connected space,c is arbitrary p connected branch 

of U ,as for arbitrary Ucx  ,then UU X  .And because 
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XL  is p local-connected,there is a connected 

neighborhood V ,and V also is p connected 

neighborhood of subspace U  9 . 

 (c)： 

    Let   is a set family that formed by all p  open 

set of 
XL ,then   is a base of 

XL ,also because p  

connected branch is p  connected subset,then   is 

connected base of 
XL . 

 (a)： 

Let XL  has a p  connected base  ,then each 

member of   are all p connected sets,as for 

XLx ,make  BxAx   ,then   xx ,that x  

is p  connected,we can know XL  is 

p local-connected by the definition 4.1.3. 

Theorem 4.2.3: Let  11 ,XL  is a 

p local-connected space,  TX ,  is a topological 

space, XLf X :  is a continuous open mapping,then we 

can construct that  22 ,XL  is a p local-connected 

space by  TX , . 

Proof :Let 
XL  is a p local-connected space, 

then  we can know there is a p  connected base in 
XL  

by the definition 4.2.2.As for f  is a continuous open 

mapping,to make     BBf0
,then 

 BfB , ,  BfB ,  is p  connected open set 

of X ,so 0  is  p  connected open set family of X .As 

for arbitrary p  open set of X , f  is p  connected 

and surjection,so: 

   BfBfAffA
BB 11

)(
 

 







   

Then 0  is a p  open connected base of X . 

By the theorem 4.2.2,we can know  22 ,XL  can 

structured by  TX ,  is p  connected space . 

    We call the nature is topological invariance which is 

can keep the same nature under p  continuous mapping 

in topological space. 

Theorem 4.2.4: If 1
XL ， 2

XL ， ... n
XL  are also 

p local-connected space,then n
XXXX LLLL  ....21  

is p local-connected space too.   

Proof :Let  niL i
X ,...,2,1  is p  connected 

space,from theorem 4.2.2, we can know that there is a  p  

connected base  niVi ,...,2,1  in i
XL ,then make 

  niVVVVVV in ,...,2,1...21  ,and from 

literature  10 ,we can know p connected nature is finitely 

productive property ,so V is a p  connected base of 

product space 
XL .Also,from theorem4.2.2,we can know that 

product space n
XXXX LLLL  ....21  is also a 

p local-connected space. 

       Some properties P of topological spaces are called finite 

integrable properties,  if there are 1n  arbitrary topological 

space 1
XL ， 2

XL ， ... n
XL  have property P ,and contained 

product space n
XXXX LLLL  ....21  also have 

property P ,then p local-connected nature is finitely 

productive property. 
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