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 
Abstract— This paper, considers a marketed small-cell 

caching system comprising of a Network Service Provider (NSP), 
a number of Video Retailers (VR), and Mobile Users (MU). The 
NSP rents its SBSs to the VRs intending benefits. Stackelberg 
game framework is used for addressing the SBSs as a particular 
type of resources. The MUs and SBSs as autonomous Poisson 
Point Processes (PPP) are used to develop the probability of the 
particular event that an MU receives video of its alternative 
straight from the memory of an SBS through stochastic 
geometry theory. Furthermore, a Stackelberg game is developed 
to maximize the average benefit of the NSP and the VRs. We 
look into the Stackelberg game balance by solving a non-convex 
optimization job. Therefore, based on game theoretic 
framework, we split light on the four important factors with 
respect to their relationship: Optimal pricing of renting an SBS,  
SBSs allocation among the VRs, Caching size of the SBSs, and  
the quality dispersion of the VRs. Monte-Carlo simulation show 
that our stochastic geometry-based analytical results, nearly 
match the empirical results. Mathematical results are also plied 
for measuring the intended game-theoretic framework through 
demonstrating its efficiency on pricing and resource assignation. 
 

Index Terms— Heterogeneous cellular networks, Small-cell 
caching , Stackel berg game, Stochastic geometry 
 

I. INTRODUCTION 

  Internet data traffic is anticipated to increment exponentially 
in the next decade lead by a distributing growth of MU 
parallel to their bandwidth consumption in mobile 
applications. It has been proved that on-demand MUs live 
video caused attention to the advancement of Tele-traffic over 
mobile networks [1]. In addition, a number of repetitious 
exploit of pop videos from the MUs, e.g. online blockbusters, 
and leads to extra video transmissions. The extra data 
transmissions can be cut down using caching technologies 
into intermediate network storage nodes [1, 2]. The caching 
technology contributes video capacity nearer to the MUs 
which helps extra data transmissions through redirecting the 
transferring requests to the intermediate storage nodes.      
  In general, wireless data caching comprises of two phases: 
Data positioning and Data deliverance [3]. Firstly, Data 
positioning phase, big videos are cached into storage nodes on 
off-peak turns, as in Data deliverance phase, videos called for 
are delivered from local caching system to MUs. Previous 
researches moved on the caching solutions of the  
 
Device-to-Device (D2D) and Wireless Sensor networks 
(WSN) [4 –6]. In particular [4], a caching scheme was 
introduced for a D2D based mobile network operating on the 
MUs’ caching of big video capacity. Consequently, in D2D 
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cluster size was optimized for cutting down video 
downloading delay using caching scheme. In [5, 6], a novel 
caching schemes for WSN, the protocol model of [7] was 
introduced. Because small-cell embedded architectures will 
rule in future heterogeneous networks (HetNet) [8–13], 
small-cell caching establishes a promising result for Het Nets. 
In [14], the small-cell caching is investigated in the context of 
stochastic networks. The average performance is developed 
via stochastic geometry, where the distribution of network 
nodes are modeled by Poisson point process (PPP)[15,16].   
   In this paper, we suggest a marketed small-cell caching 
scheme comprising an network service provider (NSP), video 
retailers (VRs) and mobile users (MUs). We optimize such a 
scheme inside the Stackelberg game framework by 
considering the SBSs as a particular type of resources for the 
role of video caching. Furthermore, Stackelberg game is a 
game that comprises a leader and a number of viewers 
competing with one another with respect to certain resources 
as indicated in [14]. The leader comes in at first and the 
viewers follows. However, in our scheme, we look at the NSP 
as the leader and the VRs as the viewers. The NSP fixes the 
cost of renting an SBS, whereas the VRs deal one another for 
renting SBSs partition. Consequently, this paper implements 
the first optimization caching system based on game theory. 
In detail, our tasks are; 1) modeling the MUs and SBSs in the 
network differently as links to PPP[17] . Based on this 
network model, we demonstrate an efficient MU video 
downloading process based on stochastic geometry theory 
probability over accessed videos directly from the SBS 
storage; 2) developing a productive caching model with the 
NSP and VRs benefits from SBSs renting. 3) Suggesting 
maximized average profit from NSP and the VRs through 
Stackelberg game framework. With theoretic framework, we 
look into different pricing strategies whereby the price 
charged to unlike VRs changes. 4) Through solving a 
non-convex optimization problem, we checked into the 
Stackelberg balance of this scheme and the optimal solution is 
linked to each SBS storage size and the quality dispersion of 
the VRs. 5) same pricing scheme were considered. Although 
same pricing scheme is substandard to the different NSP’s 

benefit, we found that same pricing is capable of reducing 
more backhaul costs. 
 
The rest of this paper is organized as follows. We describe the 
system model in Section II and establish the related profit 
model in Section III. We then formulate Stackelberg game for 
our small-cell caching system in Section IV. In Section V, we 
investigate Stackelberg equilibrium for the no uniform pricing 
scheme by solving a non-convex optimization problem, while 
in Section VI, we further consider the uniform pricing 
scheme. Our simulations and numerical results are detailed in 
Section VII, while our conclusions are provided in Section 
VIII. 
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II. SYSTEM MODEL 

 We consider a commercialized small-cell caching system 

consisting of an NSP, V VRs, and  a multiple of MUs . Let 
us denote by  the NSP, by =   the set of the 
VRs, and by   one of the MUs. In such a system, the VRs 
wish to rent the SBSs from L for placing their videos .Both the 
NSP and each VR aim for maximizing their profits. There are 
three stages in our system. In the first stage, the VRs purchase 
the copyrights of popular videos from video producers and 
publish them on their web-sites. In the second stage, the VRs 
negotiate with the NSP on the rent of SBSs for caching these 
popular videos. In the third stage, the MUs connect to the 
SBSs for downloading the desired videos. We will   
particularly focus our attention on the second and third stages 
within this game theoretic framework. 
 
A. Network Model  

 
 Let us consider a small-cell based caching network consisting 
of the MUs and the SBSs owned by L, where each SBS is 
deployed with a fixed transmit power P and the storage of Q 
video files.  Assume that all the SBSs transmit on the channels 
orthogonal to those of the macro-cell base stations, and thus 
there is no interference incurred by the macro-cell base 
stations.  Also assume that these SBSs are spatially distributed 
according to a homogeneous PPP (HPPP)    of intensity .  
Here, the intensity  represents the number of the SBSs per 
unit area. Furthermore, we model the distribution of the MUs 
as an independent HPPP  of intensity . The wireless 
down-link channels spanning from the SBSs to the MUs are 
independent and identically distributed (i.i.d.), and modeled 
as the combination of path-loss and Rayleigh fading. Without 
loss of generality, we carry out our analysis for a typical MU 
located at the origin. The path-loss between an SBS located at 
x and the typical MU is denoted by , where is the 
path-loss exponent. The channel power of the Rayleigh fading 
between them is denoted by ,   where   exp (1). The 
noise at an MU is Gaussian distributed with a variance .   
We consider the steady -state saturated network, where all the 
SBSs are powered on and keep transmitting data for serving 
Their MUs.Hence, the received signal-to-interference-plus-noise 
ratio (SINR) at the typical MU from an SBS located at , can 
be expressed as 
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Where the numerator represents the received 
signal power at the origin from the SBS located at X. 
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the sum of interference caused by SBSs from NSPs.The  
typical  MU  is considered to be “covered” by an SBS located 

at  x  as long as  is no less than  a pre-set   SINR  threshold 
 i.e.,     

B. Video Popularity and preferences    
 
We now model the popularity distribution, i.e., the 
distribution of request probabilities, among the popular 
videos to be cached. Denote by F =  ...,  the file set 

consisting of N video files, where each video clip that is 
frequently requested by MUs.  The   popularity distribution 
among F is represented by a vector 
 t = [  ; · · · ; ].  That is, the MUs make independent 
requests of the n-the video    with the 
probability of     
Generally, t can be modeled by the Zipf distribution [18] as             
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Where the exponent   is the positive value, characterizing 
the video popularity. A higher  correspond   a higher content   
reuse, where the most popular files account for the majority of 
the download request. From Eq. (2), the file with a smaller n 
corresponds to a higher popularity. 
 
          C.  Small-Cell Caching Process 
 
     
In this section, we introduce the process of our small cell 
caching system. In the first stage, each VR V purchases the N 
popular videos in F from the producers, and publishes these 
videos on its web-site. In the second stage, the VR negotiate 
with the NSP L for renting these SBSs. As L leases its SBSs to 
multiple VRs, we denote   the fraction 
vector, where  represents the fractions of the SBSs that are 
assigned to  We assume that the SBSs rented by each 
VR are uniformly distributed. Hence, the SBSs that are 

allocated to  can be modeled as a “thinned” HPPP v  with 

intensity .The data placements of the second stage 
commence during network off-peak time after the VRs obtain 
access to the SBSs. During the placements, each SBS will be 
allocated with one of the F FGs. Generally, we assume that 
the VRs do not have the a priori information regarding the 
popularity distribution of F. This is because the popularity of 
videos is changing periodically, and can only be obtained 
statistically after these videos quit the market. It is clear that 
each VR may have more or less some statistical information 
on the popularity distribution of videos based on the  MUs’ 

downloading history. However, this information will be 
biased due to limited sampling. In this case, the VRs will 
uniformly assign the F FGs to the SBSs with equal probability 
of for simplicity. We are interested in investigating the 

uniform assignment of video files for drawing a bottom line of 
the system performance. As the FG s are randomly assigned, 

the SBSs In  that cache the FG  can be further modeled as a 

“more thinned” HPPP with an intensity of .         In the 

third stage, the MUs start to download videos. When an MU  
requires a video of   from, it searches the SBSs in  and tries 
to connect to the nearest SBS that covers  . Provided that such an 
SBS exists, the MU  will obtain this video directly from this SBS, 
and we thereby define this event by   . By contrast, if such an 
SBS does not exist, will be redirected to the central servers of  
for downloading the requested file. Since the servers of  are 
located at the backbone network, this redirection of the demand will 
trigger a transmission via the back-haul channels of the NSP , 
hence leading to an extra cost. 

III. PROFIT MODELING     
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We now focus on modeling the profit of the NSP and the VRs 
obtained from the small-cell caching system. The average 
profit is developed based on stochastically geometrical 
distributions of the network nodes in terms of per unit area 

times unit period ( A. Average Profit 
of the NSP For the NSP , the revenue gained from the 
caching system consists of two parts:  1) The income gleaned 
from leasing SBSs to the VRs  2) The cost reduction due to 
reduced usage of the SBSs’ back-haul channels. First, the 
leasing income  of  can be calculated as 

                                                                      (3) 
 
Where    is the price per unit period charged to  for renting 
an SBS. Then we formulate the saved cost/UAP due to 
reduced back-haul channel transmissions. When an MU 
demands a video in   from   . 
Theorem 1:    The probability of the event  can be 
expressed as 

                                          (4) 
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12 F (.) in the function   is the hyper geometric 

function, while the Beta function in  is formulated as  

 dtt y 1)1(  . We assume that there are on 

average K video requests from each MU within unit period, 
and that the average back-haul Cost for a video transmission 
is   . Based on  in Eq. (4), we obtain the cost 
reduction /UAP   for the back-haul Channels of  as 
 
 

                   (5) 

By combining the above two items, the overall profit/U AP   
for L can be expressed as 

 
                                                    (6)  
 
B. Average Profit of the VRs 
 
Note that the MUs can download the videos either from the 
memories of the SBSs directly or from the servers of the VRs 
at backbone networks via back-haul channels. In the first case, 
the MUs will be levied by the VRs an extra amount of money 
in addition to the videos’ prices because of the higher-rate 
local streaming, namely, local downloading surcharge (LDS). 
We assume that the LDS of each video is set as . Then the 
revenue / U AP for a VR gained from the LDS can be 
calculated as 

                            (2) 
 
Additionally,  pays for renting the   SBS from L. The 
related cost / U AP can be written   as     
                                                                  (3)    

 
Combining the above two items,   the overall profit / U AP   
for can be expressed as  

                                                      (4)    
 

IV. PROBLEM FORMULATION 

 
In this section, we first present the Stackelberg game 
formulation for our price-based SBS allocation scheme. Then 
the equilibrium of the proposed game is investigated. 
 

A. Stackelberg Game Formulation 
 

 Stackelberg game is a strategic game that consists of a leader 
and several followers competing with each other for certain 
resources [20]. The leader moves first and the followers move 
subsequently.   In our small-cell caching system, we model   
the NSP as the leader and the V VRs as the followers.  
The NSP imposes a price vector   S =[ for the 
lease of its SBSs, where    has been defined in the 
previous section as the price per unit period charged on for 
renting an SBS. After the price vector s is set, the VRs 
updated the fraction  that they tend to rent from  
1)Optimization Formulation of the Leader: Observe from the 
above game model that the NSP’s objective is to maximize its 

profit  formulated in   Eq (6).  Note that for , the 
fraction  a function of the price under the  Stackelberg 
game formulation. This means that the fraction of the SBSs 
that each VR is willing to rent depends on the specific price 
charged to them for renting an SBS. Consequently, the NSP 
has to find the optimal price vector s for maximizing its profit.   
This optimizing problem can be summarized as follows 
Problem1: The optimization problem of maximizing  profit 
can be formulated as 
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2)  Optimization formulation of the followers:  The profit 
gained by the VR  in Eq.(9) can be further written as 
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  We can see from Eq. (11)   that once the price  is fixed, the 
profit of  depends on , i.e., the fraction of SBSs that are 
rented by . If  increases the fraction , it will gain more 
revenue by levying surcharges from more MUs, while at the 
same time, will have to pay for renting more SBSs. 
Therefore,  has to be optimized for maximizing the profit 
of . This optimization can be formulated as follows. 
Problem 2: The optimization problem of maximizing  
profit can be written as 
 

                                                                                (5) 
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Problem 1 and Problem 2 together form a Stackelberg game. 
The objective of this game is to find the Stackelberg   
Equilibrium (SE) points from which neither the leader (NSP) 
nor the followers (VRs) have incentives to deviate. In the 
following, we investigate the SE points for the proposed game 
 

B. Stackelberg Equilibrium 
 

For our stackelberg game, the SE is defined as follows. 
Definition 1: let    be a solution for problem 
1, and  be a solution for problem2,     Define  

  Then the point  is   an SE for the 
proposed stackelberg game if for any   with    
and , the following condition is satisfied 

    (13)     
 
  Generally, the SE of a Stackelberg game can be obtained by 
finding its perfect Nash Equilibrium (NE). In our proposed 
game, we can see that the VRs strictly compete in a 
non-cooperative fashion. Therefore, a non-cooperative sub 
game on controlling the fractions of rented SBSs is 
formulated at the VRs’ side. For a non-cooperative game, the 
NE is defined as the operating points at which no players can 
improve utility by changing its strategy unilaterally. At the 
NSP’s side, since there is only one player, the best response of 

the NSP is to solve Problem 1. To achieve this, we need to 
first find the best response functions of the followers, based 
on which, we solve the best response function for the leader. 
Therefore, in our game, we first solve Problem 2 given a price 
vector s. Then with the obtained best response function of 
the VRs, we solve Problem 1 for the optimal price . In the 
following, we will have an in-depth investigation on this game 
theoretic optimization 

V. GAME THEORETIC OPTIMIZATION     

 
   In this section, we will solve the optimization problem in 
our game. Under the non-uniform pricing scheme, where the 
NSP  charges the VRs with different prices   for 
renting an SBS. In this scheme, we first solve Problem 2 at the 
VRs, and rewrite Eq. (11) as 
 

                   (6) 

 
Where ,      )+1   and 

. We observe that Eq.(14) is  a concave function 
over the variable  Thus , we can obtain  the optimal 
solution  by solving  the Karush-Kuhn-Tucher(KKT) 
conditions, and we have the following lemma.   Lemma1: For 
given price  the optimal solution of problem 2 is 
 

                           (7)   

Where        max ( ;  0).   Proof:  The optimal solution    
of   can be obtained by deriving  with respect to   
and solving    =0   under the constraint that      We 
can see from Lemma 1 that, if the   price    is set too high, 

i.e.,  , the VR Vv will opt out for renting  any SBS 

from  due the high price charged. Consequently, the VR   
will not participate in the game.  In the following derivations, 

we assume that the LDS on each video   is set by the VRs 
to be the cost of a video transmission via back-haul 
channels . The rational behind this assumption is as 
follows. Since a local downloading reduce a back-haul 
transmission, this saved back-haul transmission can be 
potentially utilized to provide extra services (equivalent to the 
value of ) for the MUs. In addition, the MUs enjoy the 
benefit from faster local video transmissions. In light of this, it 
is reasonable to assume that the MUs are willing to accept the 
price    for a local video transmission. Substituting the 
optimal  of Eq. (15) into Eq. (6) and carry out some further 
manipulations, we arrive at 
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Where     is the indicator function, with  if      

and    otherwise.   Upon defining the binary 
vector , we can rewrite problem 1 as 
follows.Problem 3: Given the optimal solution   
gleaned from the followers, we can rewrite problem 1 as 

                                                                                                                               

                               (17)         

Observe from Eq. (17) that Problem 3 is non-convex due to . 
However, for a given , this problem can be solved by 
satisfying the KKT conditions.  

VI. DISCUSSIONS OF OTHER SCHEMES   

 
 Let us now consider two other schemes, namely, an uniform 
pricing scheme and a global optimization scheme.     
    

A. Uniform Pricing Scheme 
 

In contrast to the non-uniform pricing scheme, the uniform 
pricing scheme deliberately imposes the same price on the 
VRs in the game. We denote the fixed Price by s. In this case, 
similar to Lemma 1, Problem 2 can be solved by 
 

.                                           (9) 

 
Problem 4 can be converted to that of minimizing subject to 

the constraint  .  We then obtain 

the optimal  for this special case as  
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                                                                                       (10) 

 
To guarantee that all the VRs are Capable of participating in 

the game, ie., with the optimal price   Then we 

have the following constraint on the storage Q as    
 

 Q>Q                                          (11) 

 
We can see that   we require a larger storage size Q in Eq. (20) 
to accommodate all the VRs under the non-uniform pricing 

scheme, since we have   the optimal 

  in the uniform pricing scheme can be readily 
obtained as 

; ,        
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Note that   in Eq. (23) is defined as 

                                                     (24)  

It is clear that the uniform pricing scheme is inferior to the 
non-uniform pricing scheme in terms of maximizing   
However; we will show in the following problem that the 
uniform pricing scheme offers the optimal solution to 
maximizing the back-haul cost reduction  at the NSP in 
conjunction with , from the followers. Problem 5: With 
the aid of the optimal solutions  from the followers, the 
maximization on  is achieved by solving the following 
problem: 
 

      

s.t                                                              (25) 

 
The optimal solution to Problem 5 can be readily shown to be  

given in Eq. (21). This proof follows the similar procedure 
of the optimization method presented in the previous section. 
Thus it is skipped for brevity. In this sense, the uniform 
pricing scheme is superior to the non-uniform scheme in terms 
of reducing more cost on back-haul channel transmissions. 
 

B. Global Optimization Scheme   
 

In the global optimization scheme, we are interested in the 
sum profit of the NSP and VRs, which can be expressed as.                    

 

  =                                                                 (26) 
 
Observe from Eq. (26), we can see that the sum 
profit is twice the back-haul cost reduction , 
where the vector  is the only variable of this 
maximization problem. 
Problem 8: 
 The optimization of the sum profit SGLB can be     
formulated as 

                                 

s.t.                                                                                    (15) 

 
Problem 6 is a typical water-filling optimization 
problem. By relying on the classic Lagrangian 
multiplier, we arrive at the optimal solution   

=                                        (16) 

 

Where we have   and   satisfies 

the constraint of  
 

C. Comparisons     
 

Let us now compare the optimal SBS allocation variable in 
the context of the above two schemes. First, we investigate  
in the uniform pricing scheme. By substituting Eq. (21) into 
Eq. (18), we have 
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Where   and  ensures  

Then, comparing given in Eq. (29) to the optimal solution  
of the global optimization scheme given by Eq. (28), we can 
see that these two solutions are the same. In other words, the 
uniform pricing scheme in fact represents the global 
optimization scheme in terms of maximizing the sum profit 

and maximizing the back-haul cost reduction . 

VII. SIMULATION RESULTS AND OBSERVATIONS   

 
In this section, we provide both numerical as well as 
Monte-Carlo simulation results for evaluating the 
performance of the proposed schemes. The physical layer 
parameters of our Simulations, such as the path-loss exponent 

, transmit power P of the SBSs and the noise power  are 
similar to those of the 3GPP standards. The unit of noise 
power and transmit power is Watt, while the SBS and MU 
intensities are expressed in terms of the numbers of the nodes 
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per square kilometer. We set the path-loss exponent to  = 4, 
the SBS transmit power to  = 1Watt, the noise power to  
= , and the pre-set SINR threshold to =0.01. For 
the file caching system, we set the number of files in  to 
 N = 500 and set the number of VRs to V = 15. For the network 
deployments, we set the intensity of the MUs to , 
and investigate three cases of the SBS deployments as 

. For the pricing system, the 
profit=UAP is considered to be the profit gained per month 
within an area of one square kilometer, i.e., /month. . We 
note that the profits gained by the NSP and by the VRs are 
proportional to the cost of back-haul channels for 
transmitting a video. Hence, without loss of generality, we set 

for simplicity. Additionally, we set K = 10/month, which 
is the average number of video requests from an MU per 
month. We first verify our derivation of  by comparing 
the analytical results of Theorem 1 to the Monte-Carlo simulation 
results. Upon verifying we will investigate the 

optimization results within the framework of the proposed 
Stackelberg game by providing numerical results. 
Comparisons between the simulations and   analytical results 
on . We consider four kinds of storage size each 
SBS, i.e., 

 and three kinds of SBS intensity, 
ie  

 
Fig. 1. Comparing simulations and analytical results on 

 

 Pr ( ), fv  .We consider four kinds of storage size Q in each 

SBS, i.e.,Q = 10, 50, 100, 500 and three kinds of SBS 
intensity, ie., λ = 5, 20, 40 

 
Fig2. The minimum number of hat allows all the VRs to 

participate in the game under different parameter . 

Fig. 3.  Number of participants, i.e., the VRs that are in the 
game, vs. the preference parameter . 

 
Fig.4. various revenues, including  and   vs. the 

preference parameter , under the two scheme. 
 

Fig. 5. Number of participants vs. the storage size  

 
Fig.6.Various revenues, including and vs. the 

storage size  under the two schemes. 
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Fig. 7. Price charged on each VR for renting an SBS per 

month. 
 

 
Fig. 8.     The fraction of SBSs that are rented by each VR. 

 
 

In Fig.1 .we can see that simulation results closely match the 
analytical results in Theorem 1 . Our simulation shows that 
the intensity  does not affect Pr ( , which is consistent 
with our analytic results. Furthermore, a larger Q leads to a 
higher value of Pr ( , . Hence enlarging the storage size is 
helpful for achieving a higher probability of direct 
downloading. 
 
Fig. 2 .We can also observe that for in the UPS and 
for in the NUPS, the Minimum becomes larger 
than the overall number of videos In both cases, since we 
have  results in the same performance as   
some unpopular VRs will be excluded from the game.  
 
Fig.3 shows that the number of VR participants keeps going 
down upon increasing in the both schemes. The NUPS 
always keeps more VRs in the game than the UPS under the 
same. At the same time, by considering  
,it is shown that for a given , a higher will keep more VRs in 
the game. 
 
Fig.4. shows two kinds of revenues gained by the two 
Schemes for a given storage of namely, the global 
profit defined in Eq. (26) and the profit of the NSP 

defined in Eq. (6). Recall that we have   

according to Eq. (26). We can see that the 
revenues of both schemes increase exponentially upon 
increasing, as stated in Remark 4. As our analytical result 
shows, the profit  gained by the NUPS is optimal and 
thus it is higher than that gained by the UPS, while the UPS 
maximizes both  and    fig.4 verifies the accuracy of 
our derivations.    
 
Fig.5. shows the number of participants in the game versus 

where and are considered. It is shown that for a 
larger  more VRs are able to participate in the game. Again, 
the NUPS outperforms the UPS owing to its capability of 
accommodating more VRs for a given  . By comparing the 
scenarios of  we find that for  a given 
increase of   can accommodate more VRs in the game than 

  
 
Fig. 6.  We can see that the revenues of both schemes increase 
with the growth of  It is shown that the profit gained by 
the NUPS is higher than the one gained by the UPS, while the 
UPS outperforms the NUPS in terms of both and .  
 
Fig.7.   We can see that in the NUPS, the price for renting an 
SBS is higher for the VRs having a higher popularity than 
those with a lower popularity. By contrast, in the UPS, this 
price is fixed for all the VRs . 
   
  In Fig.8.  We observe that   in both schemes, the VRs 
associated with a high popularity tend to rent more SBSs. 
Furthermore, the UPS seems more aggressive than the NUPS, 
since the less popular VRs of the UPS are more difficult to 
rent an SBS, and thus these VRs are likely to be excluded 
from the game with a higher probability. 

VIII. CONCLUSIONS  

 In this paper, we considered a marketed small-cell caching 
system comprising of an NSP and multiple VRS. In such a 
system, the NSP leases its SBSs to the VRs to gain profits, and 
for reducing the costs of back-haul channel transmissions, 
while the VRs, after storing popular videos to the rented 
SBSs, can provide faster transmissions to the MUs,. We 
proposed a Stackelberg game theoretic framework by viewing 
the SBSs as a type of resources. We first modeled the MUs 
and SBSs using two independent PPPs via stochastic 
geometry, and developed the probability expression of direct 
downloading. Then, based on the probability, we formulated 
the Stackelberg game to maximize the average profit of the 
NSP as well as individual VRs. Next, we investigated the 
Stackelberg equilibrium by solving the associated 
non-convex optimization problem. We proved that the 
non-uniform pricing scheme can effectively maximize the 
profit of the NSP, while the uniform one maximizes the sum 
profit of the NSP and we also verified monte-carlo 
simulations that the direct downloading probability under our 
PPP model is consistent with our derived results.  Simulation 
results were provided to show that the proposed scheme is 
effective in pricing and resource allocation. 
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