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Wireless Video Caching in Heterogeneous Networks:
A Stackelberg Game Approach

Mutangana Eugene

Abstract— This paper, considers a marketed small-cell
caching system comprising of a Network Service Provider (NSP),
anumber of Video Retailers (VR), and Mobile Users (MU). The
NSP rents its SBSs to the VRs intending benefits. Stackelberg
game framework isused for addressing the SBSsas a particular
type of resources. The MUs and SBSs as autonomous Poisson
Point Processes (PPP) are used to develop the probability of the
particular event that an MU receives video of its alternative
straight from the memory of an SBS through stochastic
geometry theory. Furthermore, a Stackelberg gameis developed
to maximize the average benefit of the NSP and the VRs. We
look into the Stackelberg game balance by solving a non-convex
optimization job. Therefore, based on game theoretic
framework, we split light on the four important factors with
respect to their relationship: Optimal pricing of renting an SBS,
SBSs allocation among the VRs, Caching size of the SBSs, and
the quality dispersion of the VRs. Monte-Carlo simulation show
that our stochastic geometry-based analytical results, nearly
match the empirical results. Mathematical results are also plied
for measuring the intended game-theor etic framework through
demonstrating its efficiency on pricing and resour ce assignation.

Index Terms— Heterogeneous cellular networks, Small-cell
caching, Stackel berg game, Stochastic geometry

I. INTRODUCTION

Internet datatraffic is anticipated to increment exponentially
in the next decade lead by a distributing growth of MU
paralel to their bandwidth consumption in mobile
applications. It has been proved that on-demand MUs live
video caused attention to the advancement of Tele-traffic over
mobile networks [1]. In addition, a number of repetitious
exploit of pop videos from the MUs, e.g. online blockbusters,
and leads to extra video transmissions. The extra data
transmissions can be cut down using caching technologies
into intermediate network storage nodes [1, 2]. The caching
technology contributes video capacity nearer to the MUs
which helps extra data transmissions through redirecting the
transferring requests to the intermediate storage nodes.

In general, wireless data caching comprises of two phases:
Data positioning and Data deliverance [3]. Firstly, Data
positioning phase, big videos are cached into storage nodes on
off-peak turns, asin Data deliverance phase, videos called for
are delivered from local caching system to MUs. Previous
researches moved on the caching solutions of the

Device-to-Device (D2D) and Wireless Sensor networks
(WSN) [4 —6]. In particular [4], a caching scheme was
introduced for a D2D based mobile network operating on the
MUs’ caching of big video capacity. Consequently, in D2D
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cluster size was optimized for cutting down video
downloading delay using caching scheme. In [5, 6], a novel
caching schemes for WSN, the protocol model of [7] was
introduced. Because small-cell embedded architectures will
rule in future heterogeneous networks (HetNet) [8-13],
small-cell caching establishes apromising result for Het Nets.
In[14], the small-cell caching isinvestigated in the context of
stochastic networks. The average performance is developed
via stochastic geometry, where the distribution of network
nodes are modeled by Poisson point process (PPP)[15,16].

In this paper, we suggest a marketed small-cell caching
scheme comprising an network service provider (NSP), video
retailers (VRs) and mobile users (MUs). We optimize such a
scheme inside the Stackelberg game framework by
considering the SBSs as a particular type of resources for the
role of video caching. Furthermore, Stackelberg game is a
game that comprises a leader and a number of viewers
competing with one another with respect to certain resources
as indicated in [14]. The leader comes in at first and the
viewersfollows. However, in our scheme, welook at the NSP
as the leader and the VRS as the viewers. The NSP fixes the
cost of renting an SBS, whereas the VRs deal one another for
renting SBSs partition. Consequently, this paper implements
the first optimization caching system based on game theory.
In detail, our tasks are; 1) modeling the MUs and SBSsin the
network differently as links to PPP[17] . Based on this
network model, we demonstrate an efficient MU video
downloading process based on stochastic geometry theory
probability over accessed videos directly from the SBS
storage; 2) developing a productive caching model with the
NSP and VRs benefits from SBSs renting. 3) Suggesting
maximized average profit from NSP and the VRs through
Stackelberg game framework. With theoretic framework, we
look into different pricing strategies whereby the price
charged to unlike VRs changes. 4) Through solving a
non-convex optimization problem, we checked into the
Stackelberg balance of this scheme and the optimal solutionis
linked to each SBS storage size and the quality dispersion of
the VRs. 5) same pricing scheme were considered. Although
same pricing scheme is substandard to the different NSP’s
benefit, we found that same pricing is capable of reducing
more backhaul costs.

Therest of this paper isorganized asfollows. We describe the
system model in Section Il and establish the related profit
model in Section I11. We then formulate Stackelberg game for
our small-cell caching systemin Section V. In Section V, we
investigate Stackel berg equilibrium for the no uniform pricing
scheme by solving a non-convex optimization problem, while
in Section VI, we further consider the uniform pricing
scheme. Our simulations and numerical results are detailed in
Section VII, while our conclusions are provided in Section
VIII.
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Il. SYSTEM MODEL

We consider a commercialized small-cell caching system

consisting of an NSP, V VRS, and amultiple of MUs . Let
us denote by L the NSP, by ¥= {1,.17,...1,} the set of the
VRs, and by M one of the MUs. In such a system, the VRs
wishto rent the SBSsfrom L for placing their videos .Both the
NSP and each VR aim for maximizing their profits. There are
three stagesin our system. In thefirst stage, the VRS purchase
the copyrights of popular videos from video producers and
publish them on their web-sites. In the second stage, the VRs
negotiate with the NSP on the rent of SBSs for caching these
popular videos. In the third stage, the MUs connect to the
SBSs for downloading the desired videos. We will
particularly focus our attention on the second and third stages
within this game theoretic framework.

A. Network Model

Let usconsider asmall-cell based caching network consisting
of the MUs and the SBSs owned by L, where each SBS is
deployed with a fixed transmit power P and the storage of Q
videofiles. Assumethat all the SBSstransmit on the channels
orthogonal to those of the macro-cell base stations, and thus
there is no interference incurred by the macro-cell base
stations. Also assumethat these SBSsare spatially distributed
according to a homogeneous PPP (HPPP) & of intensity A.
Here, the intensity A represents the number of the SBSs per
unit area. Furthermore, we model the distribution of the MUs
as an independent HPPP ¥ of intensity ¢{. The wireless
down-link channels spanning from the SBSs to the MUs are
independent and identically distributed (i.i.d.), and modeled
as the combination of path-loss and Rayleigh fading. Without
loss of generality, we carry out our analysis for atypical MU
located at the origin. The path-loss between an SBS|ocated at
x and the typical MU is denoted by ||x]|~%, where z is the
path-loss exponent. The channel power of the Rayleigh fading
between them is denoted by k,., where k, ~ exp (1). The
noise at an MU is Gaussian distributed with a variance #2.
We consider the steady -state saturated network, where al the
SBSs are powered on and keep transmitting data for serving
Their MUs.Hence, the received signal -to-interference-plus-noise
ratio (SINR) at the typical MU from an SBSlocated at x , can
be expressed as

Ph
p(x) = al — (1)

Yx ed\x Phx' HX 2

|—0.

+ 0o

Where the numerator Fh.|lx]| ™ represents the received
signal power at the origin from the SBS located at X.

The denominator >~ ph_||x|| " + o2 s

the sum of interference caused by SBSs from NSPs.The
typical MU is considered to be “covered” by an SBS located
at x aslongas p(x) isnolessthan apre-set SINR threshold
g.ie, p(x) =4

B. Video Popularity and preferences

We now model the popularity distribution, i.e., the
distribution of request probabilities, among the popular
videos to be cached. Denote by F ={f..fs ...,fx1 the file set

consisting of N video files, where each video clip that is
frequently requested by MUs. The popularity distribution
among F isrepresented by a vector

t = [e,t5; - -+ ty]. That is, the MUs make independent
requests of the n-the video f,. n=1.....N. with the
probability of t,,.

Generally, t can be modeled by the Zipf distribution [18] as

L
DR
j=1
Where the exponent § is the positive value, characterizing
the video popularity. A higher & correspond ahigher content
reuse, where the most popular files account for the mgjority of

the download request. From Eq. (2), the file with asmaller n
corresponds to a higher popularity.

1)

C. Small-Cell Caching Process

In this section, we introduce the process of our small cell
caching system. In thefirst stage, each VR V purchasesthe N
popular videos in F from the producers, and publishes these
videos on its web-site. In the second stage, the VR negotiate
withthe NSP L for renting these SBSs. AsL leasesits SBSsto
multiple VRS, we denote = [r,T; ....T,] the fraction
vector, where t,, represents the fractions of the SBSsthat are
assigned to v, v, . We assume that the SBSs rented by each
VR are uniformly distributed. Hence, the SBSs that are

alocated to v, can be modeled as a “thinned” HPPP @, with

intensity t,4 .The data placements of the second stage
commence during network off-peak time after the VRs obtain
access to the SBSs. During the placements, each SBS will be
allocated with one of the F FGs. Generally, we assume that
the VRs do not have the a priori information regarding the
popularity distribution of F. Thisis because the popularity of
videos is changing periodically, and can only be obtained
statistically after these videos quit the market. It is clear that
each VR may have more or less some statistical information
on the popularity distribution of videos based on the MUs’
downloading history. However, this information will be
biased due to limited sampling. In this case, the VRs will
uniformly assign the F FGsto the SBSswith equal probability
ofré for simplicity. We are interested in investigating the
uniform assignment of video filesfor drawing abottom line of
the system performance. As the FG s are randomly assigned,

the SBSsin (I}: that cache the FG Gy can be further modeled as a
“more thinned” HPPP &,.; with an intensity of %Tvﬂ.. In the
third stage, the MUs start to download videos. When an MU M
requires avideo of Gy from, it searches the SBSsin '=I=',;,‘r- and tries
to connect to the nearest SBSthat covers M . Provided that such an
SBS exists, the MU M will obtain this video directly from this SBS,
and we thereby define this event by . . By contrast, if such an
SBS does not exist, Mwill be redirected to the central servers of v,
for downloading the requested file. Since the servers of v, are
located at the backbone network, this redirection of the demand will
trigger a transmission via the back-haul channels of the NSP L,
hence leading to an extra cost.

1. PROFIT MODELING

www.ijeas.org



International Journal of Engineering and Applied Sciences (IJEAS)

We now focus on modeling the profit of the NSP and the VRs
obtained from the small-cell caching system. The average
profit is developed based on stochastically geometrical
distributions of the network nodes in terms of per unit area

timesunit period (fUAF. e. g../month.km = A, Average Profit
of the NSP For the NSP L, the revenue gained from the
caching system consists of two parts: 1) Theincome gleaned
from leasing SBSs to the VRs 2) The cost reduction due to
reduced usage of the SBSs’ back-haul channels. First, the

leasing income; - of L can be calculated as

¥
> TS
sAT _ J=1 (3)
Where =; isthe price per unit period charged to v; for renting
an SBS. Then we formulate the saved cost/UAP due to
reduced back-haul channel transmissions. When an MU
demandsavideoin Gy fromu, .

Theorem1: The probability of the event z,.¢. ¥v. f. can be
expressed as

PT(EL"I-:I = c::S_n‘:l:::-'—!u"_‘;:l-.tt::ﬁ_n‘"_'lrl.+r,_ (4)
2 2 2
Where 4(5,a) A K (L 1-——2-—-6)
T & o o
2 2. 2
And C(d.a) A 2= B(—,1——). Furthermore
- o a (04

,F, () in the function 4(5,a) is the hyper geometric
function, while the Beta function in {3, &) is formulated as
B(x.y) = [yt 1 (1—t)Ydt. We assume that there are on
average K video requests from each MU within unit period,
and that the average back-haul Cost for a video transmission
is 5%, Based on Pr(zys ) in Eq. (4), we obtain the cost
reduction /UAP for the back-haul Channels of L as

F r

SEH = Z Z p.-:-l qv:'] _.;:“' K :Ezlr(fl_:'].\”:'lJI sbk (5)
v:'.l .,:.':

By combining the above two items, the overall profit/U AP

for L can be expressed as

S."'.’SF — SRT + SEH ) (6)
B. Average Profit of the VRs

Note that the MUs can download the videos either from the
memories of the SBSs directly or from the servers of the VRs
at backbone networks viaback-haul channels. Inthefirst case,
the MUswill be levied by the VRs an extra amount of money
in addition to the videos’ prices because of the higher-rate
local streaming, namely, local downloading surcharge (LDS).
We assume that the LDS of each video is set as s'“. Then the
revenue / U AP for a VR v, gained from the LDS can be
calculated as )

SéDE:Llp_i'QDE_KPT(ij :IS <, (2)
Additionaly, 1w, pays for renting the SBS from L. The
related cost / U AP can be written as

SET — ¢ s, 3)
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Combining the above two items,
for L can be expressed as
o (4)

the overall profit / U AP

V. PROBLEM FORMULATION

In this section, we first present the Stackelberg game
formulation for our price-based SBS allocation scheme. Then
the equilibrium of the proposed game is investigated.

A. Stackelberg Game Formulation

Stackelberg gameis a strategic game that consists of aleader
and several followers competing with each other for certain
resources[20]. Theleader movesfirst and the followers move
subsequently. In our small-cell caching system, we model
the NSP L astheleader and the V VRs as the followers.
The NSP imposes a price vector S =[£y. 53......5,] for the
lease of its SBSs, where .. ¥ has been defined in the
previous section as the price per unit period charged on 1, for
renting an SBS. After the price vector s is set, the VRs
updated the fraction T, ¥, that they tend to rent from L
1)Optimization Formulation of the Leader: Observe from the
above game model that the NSP’s objective is to maximize its
profit ¥*¥ formulated in  Eq (6). Note that for ¥, the
fraction 1., iz afunction of the price =, under the Stackelberg
game formulation. This means that the fraction of the SBSs
that each VR iswilling to rent depends on the specific price
charged to them for renting an SBS. Consequently, the NSP
hasto find the optimal price vector sfor maximizing its profit.
This optimizing problem can be summarized as follows
Problem1: The optimization problem of maximizing L= profit
can be formulated as

Maxp 5 (5.1),
\4

st Z z;, =1
i=1

2) Optimization formulation of the followers: The profit
gained by the VR 1, in Eq.(9) can be further written as

(10)

F _
SPR(rL. 5, = Z P4, K Pr(EE__i )59 -1 As, =
=

= . Sld
3 p;q,¢KS™z, s )

= (A6,0)-C(6,0) D7, +C(S,)F "

We canseefromEq. (11) that oncethe price s, isfixed, the
profit of v, depends on v, i.e., the fraction of SBSs that are
rented by v,. If 1, increases the fraction t,,, it will gain more
revenue by levying surcharges from more MUs, while at the
same time, v, will have to pay for renting more SBSs.
Therefore,r,, has to be optimized for maximizing the profit
of v,.. This optimization can be formulated as follows.
Problem 2: The optimization problem of maximizing ;=
profit can be written as

max 5[1;"; (Tp5p) ©)
Ty
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Problem 1 and Problem 2 together form a Stackelberg game.
The objective of this game is to find the Stackelberg
Equilibrium (SE) points from which neither the leader (NSP)
nor the followers (VRs) have incentives to deviate. In the
following, we investigate the SE pointsfor the proposed game

B. Stackelberg Equilibrium

For our stackelberg game, the SE is defined as follows.
Definition1: let =* £ [s;,54......55] beasolutionfor problem
1, and t; be a solution for problem2, v, Define
£ [1.15....Tp]. Then the point (z*.7*)is an SE for the
proposed stackelberg game if for any (s.1) with s =0
and t = 0, the following condition is satisfied

NSBpo% # v cNSPr. # ol % % cFRr %
SEE T 28 s, S 2 5 5T Y, (1))

Generally, the SE of a Stackelberg game can be obtained by
finding its perfect Nash Equilibrium (NE). In our proposed
game, we can see that the VRs dirictly compete in a
non-cooperative fashion. Therefore, a non-cooperative sub
game on controlling the fractions of rented SBSs is
formulated at the VRs’ side. For a non-cooperative game, the
NE is defined as the operating points at which no players can
improve utility by changing its strategy unilaterally. At the
NSP’s side, since there is only one player, the best response of
the NSP is to solve Problem 1. To achieve this, we need to
first find the best response functions of the followers, based
on which, we solve the best response function for the leader.
Therefore, in our game, wefirst solve Problem 2 given aprice
vector s. Then with the obtained best response function r* of
the VRs, we solve Problem 1 for the optimal prices*. In the
following, wewill have an in-depth investigation on this game
theoretic optimization

V. GAMETHEORETIC OPTIMIZATION

In this section, we will solve the optimization problem in
our game. Under the non-uniform pricing scheme, where the
NSP L charges the VRs with different prices s,, ....s, for
renting an SBS. In this scheme, wefirst solve Problem 2 at the
VRs, and rewrite Eq. (11) as

14
VE o [p=tizy,
ST TS, -

v (TpSp) Bz, +i

- Az, 1. 0 (6)

Where T' 2 E_"i'-_ﬂ_p_i-r:_.',:;fi, B2 A0 0) —C(fa)+l and
A2 C(6.a)F. Weobserve that Eq.(14) is a concave function
over the variable . Thus , we can obtain the optimal
solution by solving the Karush-Kuhn-Tucher(KKT)
conditions, and we have the following lemma. Lemmal: For
given price =,. the optimal solution of problem 2 is

oz LY +

w=(BEE-4). @

Where (.)* £ max(; 0). Proof: Theoptimal solution
of v, can be obtained by deriving s5i® with respect to r,,
and solving d5y® =0 under the constraint that r, = 0. We
can seefromlLemma 1 that, if the price s, isset too high,
r:‘.;'d , the VR W will opt out for renting any SBS
from L due the high price charged. Consequently, the VR 1,
will not participate in the game. In the following derivations,

ie, 5=

we assume that the LDS on each video s'¢ is set by the VRs
to be the cost of a video transmission via back-haul
channels =", The rational behind this assumption is as
follows. Since a loca downloading reduce a back-haul
transmission, this saved back-haul transmission can be
potentially utilized to provide extraservices (equivalent to the
value of =°%) for the MUs. In addition, the MUs enjoy the
benefit from faster local video transmissions. Inlight of this, it
isreasonabl e to assume that the MUs are willing to accept the

price =™ for a local video transmission. Substituting the

optimal t;; of Eq. (15) into Eq. (6) and carry out some further
manipulations, we arrive at

1 A
) +
‘5_':' EJ
; - W _
Bl'._‘-.-BTw:.i ] :' +1
i i(—g‘.ﬂ +(,'_?J?'_ T S .
q v 'F]\!I]}E ls; + I;s

_1 B w +

J_

v

2, o M5 (8)

=1 O

Where £; istheindicator function, with£; =1 if s; = rﬂ'
and £;=10 otherwise. Upon defining the binary
vector § £ [£,. 5, ..5], we can rewrite problem 1 as
follows.Problem 3: Given the optimal solution 7. ¥
gleaned from the followers, we can rewrite problem 1 as
ming o BV E(Aks - ]"jshh]

st Thag(Tas™ -a)<e (17)
Observefrom Eq. (17) that Problem 3 isnon-convex dueto £.
However, for a given £, this problem can be solved by
satisfying the KKT conditions.

V1. DISCUSSIONS OF OTHER SCHEMES

Let us now consider two other schemes, namely, an uniform
pricing scheme and a global optimization scheme.

A. Uniform Pricing Scheme

In contrast to the non-uniform pricing scheme, the uniform
pricing scheme deliberately imposes the same price on the
VRsinthe game. We denote the fixed Price by s. In this case,
similar to Lemma 1, Problem 2 can be solved by

5 +

. [rste 1
= (_.,J LB;A _\l; - EL) . (9)
Problem 4 can be converted to that of minimizing subject to
. . n , Ll )
the congtraint ¥, ﬁ.!;' = (VA +a@) 1,!:..35_"-' . Wethen obtain

the optimal z for this special case as

www.ijeas.org



International Journal of Engineering and Applied Sciences (IJEAS)

- ;l_ghu[:?;f_l '.:.TII‘

= Tiwaeer (10)
To guarantee that all the VRs are Capable of partj cipating in
the game, ie., £, = 1.wv.with the optimal price% Then we
have the following constraint on the storage Q as

(11)

Wecan seethat werequirealarger storage size Q in Eq. (20)
to accommodeate all the VRS under the non-uniform pricing

scheme, since we have ¥, |';' =T "‘7'. the optimal
*.

" =[s{, ...5"] intheuniform pricing scheme can be readily
obtained as )
- [ -I'-'gkulzf_'l-n: ].r
P ST AmAREE
r=1, ,‘.‘.E
v =0 +1, ..V (12)
Where = argmin,fsu =12 ....T} (13)
) whisth(Te TE
With Su:W—Ef=1E'SGF,
1, U, <Q<U,,
T=<u, U,<Q=U,, (14)
V, Uv<Q.
Notethat I, in Eq (23) isdefined as
_ *.rr:mr:‘u| s —l-':-
Uy = Al n_u:'j ClEa1+1 (24)

It is clear that the uniform pricing scheme is inferior to the
non-uniform pricing scheme in terms of maximizing 5¥=7,
However; we will show in the following problem that the
uniform pricing scheme offers the optima solution to
maximizing the back-haul cost reduction 5% at the NSP in
conjunction withr,. w,,, from the followers. Problem 5: With
the aid of the optimal solutions t,. wv. fromthefollowers, the
maximization on 55 is achieved by solving the following
problem:

ming ..o i1 f; |:1~ ' TS5 —T;s b,

L
|T s
st E_l,. 13:: (| .13.

—ﬂ:] =a.

(25)

The optimal solution to Problem 5 can be readily shown to be
z"givenin Eq. (21). This proof follows the similar procedure
of the optimization method presented in the previous section.
Thus it is skipped for brevity. In this sense, the uniform
pricing schemeis superior to the non-uniform schemein terms
of reducing more cost on back-haul channel transmissions.

B. Global Optimization Scheme

In the global optimization scheme, we are interested in the
sum profit of the NSP and VRS, which can be expressed as.

I SSN: 2394-3661, Volume-3, | ssue-9, September 2016

SE.LAB 5‘-’5:‘_'_21' ll5-|-'.|'i -

EL. "ﬂ.l I;'.I:I.(,"e'ghm"':l.
I J (Afg.o)—El8.a)+ 1)T py + C(E2IF
=255,

(26)

Observe from Eqg. (26), we can see that the sum
profit 55-F istwice the back-haul cost reduction 552,

where the vector £ is the only variable of this
maximization problem.

Problem 8:
The optimization of the sum profit SGLB can be
formulated as
v 7y, B, Py ap {K
min r=p J'=1.:A.;:._c:| cn_n_lrfl+ij|?_-1+£l:5.n'fh‘-"
stEL, 1 =1, (15)

Problem 6 is a typical water-filling optimization
problem. By relying on the classic Lagrangian
multiplier, we arrivg at the optimal solution

T:(Aw—cu] Y (16)

3 =
Ay o GJ

Foléo)F+AlEa)—ClEal+1

Where we have i = and 7 satisfies

the constraint of 7.

C. Comparisons

Let us now compare the optimal SBS alocation variable r,in
the context of the above two schemes. First, we investigate .,
in the uniform pricing scheme. By substituting Eq. (21) into
Eq. (18), we have

. ( JAE T Ay

p = — —=

Bl ,Js'

09, C(d,a)F

=n
AS,a)-C(0,a)+1’
0

v=1,...,0 17

v=0+1,...,V,

Where 1n'=— EF-.“:E -

1 F ClE.a)F+AlSo)—ClEa)+1
Then, comparing r,givenin Eg. (29) to the optimal solution ¢
of the global optimization scheme given by Eq. (28), we can
see that these two solutions are the same. In other words, the
uniform pricing scheme in fact represents the global
optimization scheme in terms of maximizing the sum profit
55L%and maximizing the back-haul cost reductions®®.

and i ensurest, = 0.

VII. SIMULATION RESULTSAND OBSERVATIONS

In this section, we provide both numerical as well as
Monte-Carlo simulation results for evaluating the
performance of the proposed schemes. The physical layer
parameters of our Simulations, such as the path-loss exponent
@, transmit power P of the SBSs and the noise power - are
similar to those of the 3GPP standards. The unit of noise
power and transmit power is Watt, while the SBS and MU
intensities are expressed in terms of the numbers of the nodes
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per square kilometer. We set the path-loss exponent to o = 4,
the SBS transmit power to P = 1Watt, the noise power to a*
=10"*"wat, and the pre-set SINR threshold to §=0.01. For
the file caching system, we set the number of filesin F to

N =500 and set the number of VRsto V = 15. For the network
deployments, we set the intensity of the MUsto ¢ = 50/km?,
and investigate three cases of the SBS deployments as
A=5/km% 10/km® 40/km®. For the pricing system, the
profit=UAP is considered to be the profit gained per month
within an area of one square kilometer, i.e., /month.km?. We
note that the profits gained by the NSP and by the VRs are
proportional to the cost =" of back-haul channels for
transmitting avideo. Hence, without loss of generality, we set
5" for smplicity. Additionally, we set K = 10/month, which
is the average number of video requests from an MU per
month. We first verify our derivation of Pr {z,. ) by comparing
the analytical results of Theorem 1 to the Monte-Carlo simulation
results. Upon verifying Priz,f). we will investigate the
optimization results within the framework of the proposed
Stackelberg game by providing numerica  results.
Comparisons between the simulationsand analytical results
on Pr (=, f7. Weconsider four kinds of storagesize ¢ in each
SBS,i.e,

¢ =10,50,100,500 and three kinds of SBS intensity,

ied =5,20,40

+ o mtsrmmce

£ oellereliee

Feohahility of Diveet Downloading

Frmesoned SE53 T

Fig. 1. Comparing simulations and analytical results on

Pr(e,, ) .Weconsider four kinds of storagesize Q in each

SBS, i.e.,Q =10, 50, 100, 500 and three kinds of SBS
intensity, ie.,, A= 5, 20, 40

[T ——

Frmhm o Teaea

Fig2. The minimum number of ¢ that allows al the VRsto
participate in the game under different parameter y.

Aswiba af pariicipasin
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Fig. 3. Number of participants, i.e., the VRs that arein the
game, vs. the preference parametery.
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Fig.4. various revenues, including 5% and 55% vs. the
preference parametery, under the two scheme.
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Fig. 8. Thefraction of SBSsthat are rented by each VR.

In Fig.1 .we can see that simulation results closely match the
anaytical results in Theorem 1 . Our simulation shows that
the intensity 4 does not affect Pr (z,.f7, which is consistent

with our analytic results. Furthermore, a larger Q leads to a
higher value of Pr (z,. /1, . Hence enlarging the storage sizeis
helpful for achieving a higher probability of direct
downloading.

Fig. 2 .We can aso observe that for y = 0.66in the UPS and
for ¥ = 0.28in the NUPS, the Minimum @ becomes larger
than the overall number of videos &. In both cases, since we
have g = w(Q results in the same performance as ¢ = )
some unpopular VRswill be excluded from the game.

Fig.3 shows that the number of VR participants keeps going
down upon increasing ¥ in the both schemes. The NUPS

always keeps more VRs in the game than the UPS under the
same. At the same time, by considering ¢ = 10 50,100,500
Jitisshownthat for agiveny, ahigher gwill keep more VRsin
the game.

Fig.4. shows two kinds of revenues gained by the two
Schemes for a given storage of ¢ = 500 namely, the global
profit ¥ defined in Eq. (26) and the profit of the NSP

I SSN: 2394-3661, Volume-3, | ssue-9, September 2016

defined in  Eg. (6). Recadl that we have
56 = 2Sﬁﬂaccording to Eg. (26). We can see that the
revenues of both schemes increase exponentially upon
increasing, as stated in Remark 4. As our analytical result
shows, the profit 5¥*¥ gained by the NUPS is optimal and
thus it is higher than that gained by the UPS, while the UPS
maximizes both 552 and 55% fig.4 verifies the accuracy of
our derivations.

Fig.5. shows the number of participants in the game versus
. wherey = 0.3 and1 are considered. It is shown that for a
larger ¢ more VRs are able to participate in the game. Again,
the NUPS outperforms the UPS owing to its capability of
accommodating more VRs for a given ¢ . By comparing the
scenarios of ¥ = 0.3 and 1. we find that fory = 0.3 a given
increase of  can accommodate more VRs in the game than
¥y=1

Fig. 6. We can seethat the revenues of both schemesincrease
withthegrowth of @ Itisshown that the profit 5¥*Fgained by
the NUPS is higher than the one gained by the UPS, while the
UPS outperforms the NUPS in terms of both 55Fand 55%.

Fig.7. We can seethat in the NUPS, the price for renting an
SBS is higher for the VRs having a higher popularity than
those with a lower popularity. By contrast, in the UPS, this
priceisfixed for al the VRs.

In Fig.8. We observe that in both schemes, the VRs
associated with a high popularity tend to rent more SBSs.
Furthermore, the UPS seems more aggressive than the NUPS,
since the less popular VRs of the UPS are more difficult to
rent an SBS, and thus these VRs are likely to be excluded
from the game with a higher probability.

VIIl. CONCLUSIONS

In this paper, we considered a marketed small-cell caching
system comprising of an NSP and multiple VRS. In such a
system, the NSP leasesits SBSsto the VRsto gain profits, and
for reducing the costs of back-haul channel transmissions,
while the VRs, after storing popular videos to the rented
SBSs, can provide faster transmissions to the MUs,. We
proposed a Stackelberg game theoretic framework by viewing
the SBSs as a type of resources. We first modeled the MUs
and SBSs using two independent PPPs via stochastic
geometry, and devel oped the probability expression of direct
downloading. Then, based on the probability, we formulated
the Stackelberg game to maximize the average profit of the
NSP as well as individual VRs. Next, we investigated the
Stackelberg  equilibrium by solving the associated
non-convex optimization problem. We proved that the
non-uniform pricing scheme can effectively maximize the
profit of the NSP, while the uniform one maximizes the sum
profit of the NSP and we aso verified monte-carlo
simulations that the direct downloading probability under our
PPP model is consistent with our derived results. Simulation
results were provided to show that the proposed scheme is
effective in pricing and resource allocation.
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