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 

Abstract—It is significant to develop a limited-DOF parallel 

manipulator (PM) with high rigidity. However, the existing 

limited-DOF PMs include so many spherical joint which has less 

capability of pulling force bearing, less rotation range and lower 

precision under alternately heavy loads. A novel 5-DOF PM 

with two planar limbs is proposed and its dynamics are analysed 

systematically. A 3-dimension simulation mechanism of the 

proposed manipulator is constructed and its structure 

characteristics is analysed. The kinematics formulae for solving 

the displacement, velocity, acceleration of the platform, the 

active legs are established. An analytic example is given for 

solving the dynamics of the proposed manipulator and the 

analytic solved results are verified by the simulation mechanism. 

It provide the theoretical and technical foundations for its 

manufacturing, control and application.   

 
Index Terms—dynamics; limited-DOF; parallel manipulator; 

planar limbs  

I. INTRODUCTION 

Currently, various limited-DOF PMs are attracting much 

attention due to their fewer active legs, large workspace, 

simpler structure, easy control and simple kinematic solutions 

[1-2].Various limited-DOF parallel manipulators (PMs) have 

been applied in fields of rescue missions, industry pipe 

inspection, manufacturing and fixture of parallel machine 

tool, CT-guided surgery, health recover and training of human 

neck or waist and micro–Nano operation of bio-medicine 

[3–4]. In the aspects, Xie et al. [3] synthesized a class of 

limited-DOF PMs with several spherical joints(S). He and 

Gao [4] synthesized a class of 4-DOF PMs with 4 limbs, 

several S. S has the following disadvantages due to its 

structure: (1) the drag load capability is lower; (2) the rotation 

range is limited; (3) precision is lowed under alternately 

heavy loads. For this reason, The PMs with planar limbs have 

attracted many attentions because the planar limb only 

include revolute joints R and prismatic joint P. Wu and 

Gosselin [5] designed a PM with 3 planar limbs which are 

formed by a four-bar linkage. Lu et al. [6] proposed a novel 
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6-DOF PM with three planar limbs. In the aspects of 

dynamics of PMs, Using Newton–Euler methods, Dasgupta B 

et al. [7] studied dynamic models of the Stewart platform 

manipulator. Gallardo et al. [8] derived dynamic models of a 

modular spatial hyper-redundant manipulator by screw 

theory. Based on the principle of virtual work, Lu and Li [9] 

solved the dynamics of a platform manipulator with three 

planner limbs. Using the Lagrange methods, Mendes et al. 

[10] Li et al. [11] derived dynamic models of the limited 

platform manipulator. Lu and Hu [12] derived unified and 

simple velocity and acceleration for some limited-DOF PMs 

with linear active legs. 

 

Up to now, no effort towards the dynamics analysis of the 

limited-DOF PMs with planar limbs is found. For this reason, 

this paper proposed a novel 5-DOF parallel manipulator with 

two planar limbs. Its structure characteristics, kinematics and 

dynamics are studied systematically. 

II. PROTOTYPE OF NOVEL 5-DOF PM AND ITS STRUCTURAL 

CHARACTERISTICS 

   A 5-DOF PM with 2 planar limbs includes a moving 

platform m, a fixed base B, 2 vertical rods, 2 identical planar 

limbs Qi (i = 1, 2) and a SPR (spherical joint S-active 

prismatic joint P-revolute joint R) type active leg, see Fig 

1(a). Here, m is a regular triangle with 3 vertices bi (i = 1, 2, 

3), 3 sides li = l, and a central point o; B is a regular triangle, 3 

sides Li = L, and a central point O, see Fig 1(b).Each of Qi 

includes 1 upper beam gi, 1 lower beam Gi and 2 linear active 

rods rij. Each of rij is composed 1 linear actuator, 1 cylinder qij 

and 1 piston rod pij. In each of Qi, the middle of Gi connects 

with B by a horizontal revolute joint R
i1

 at Bi; the one end of 

vertical rod connects with m by a vertical revolute joint R
i4

 at 

bi, the other end of the vertical rod connects with the middle of 

gi by a revolute joint R
i5

; the two ends of rij connect with the 

two ends of gi and Gi by revolute joints R
i2

. gi, Gi, and 2 rij 

form a closed planar mechanism Qi. This PM is named as the 

5-DOF PM with 2Qi for distinguishing other kinds of PM with 

different planar limbs. 

 

Let ⊥ , ||, | be perpendicular, parallel, and collinear 

constraints respectively. Let {m} be a coordinate frame o-xyz 

fixed on m at o, {B} be a coordinate frame O-XYZ fixed on B 

at O. The PM includes the following geometric conditions: z

⊥m, y | ob2, x|| b1b3 , Z⊥B, Y | OB2 ,R
i1

|| B, R
i2⊥δi, R

i2⊥

δij,R
i4⊥R

i5
, R

i4
||z, gi||m, Gi||B, (gi, Gi, ri, rij) being in Qi, bi1bi2 

= gi, Bi1Bi2 = Gi, obi = e, OBi = E. Comparing with the existing 

limited-DOF PMs, the proposed 5-DoF PM with 2Qi possess 

the merits as follows: 
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（a） 3D model of the PM with 2Qi                   （b） kinematics model of the PM with 2Qi 

Figure 1 A 3D model of the PM with 2Qi and its kinetostatics model

 

(1) Each of planar limbs Qi only includes revolute joints R 

and prismatic joint P, therefore, it is simple in structure 

and is easy manufacturing. 

(2) Since all R in each of 2Qi are parallel mutually, each of 

rij in Qi is only subjected a linear force along its axis. 

Thus, the hydraulic translational actuator can be used 

for increasing a capability of large load bearing. In 

addition, a bending moment and a rotational torque 

between the piston rod and the cylinder can be 

avoided. 

(3) In each of planar limbs Qi, R has higher precision than 

S under large cyclic loading because backlash of R can 

be eliminated more easily than that of S. The 

workspace can be increased due to R having larger 

rotation range than S before interference. 

III. DISPLACEMENT OF 5-DOF PM 

The derivation of displacement formulae of the proposed 

PM is a prerequisite for solving velocity, acceleration and 

statics of the PM. The coordinates of bi of m in {m} and Bi of 

B in {B} are expressed as follows: 

2
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Here E is the distance from Bi to O, e is the distance from bi 

to o, i = 1, 3. As i = 1, ± is +; as i = 3, ± is −.  This condition is 

also available for Equations (3), (4) and (7). 
Let Xo, Yo, Zo be the position components of m at o in {B}. 

Let φ be one of 3 Euler angles (α, β, γ). Set sφ = sinφ, cφ=cosφ, 

bi of m in {B} are expressed as follows: 
B m

i m i b R b o                                                                               (2) 
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Here Rm
B
 is a rotation matrix from {m} to {B} in order ZYZ 

(about Z1 by α, Y by β, Z2 by γ); xl, xm, xn , yl, ym, yn , zl, zm, zn are 

nine orientation parameters of {m}. 
The coordinates of bi in {B} are expressed based on 

Equations (1) and (2) as follows: 

2
1

2 ,
2

2

l l o

i m m o

n n o
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   
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b       (3) 

Let ri (i = 1, 2, 3) be the vector from Bi to bi, ei (i = 1, 2, 3) be 

the vector from o to bi. They are derived from Equations (1) 

and (3) as: 

2

( q ) 2
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e e                                  (4) 

Let n0i and ni be the vector of Gi and its unit vector. Based 

on the geometric condition, there are n01 ||B2B3, n02||B1B3, n0i, 

ni can be derived by Equation (1) as follows: 
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0

0

n
n

n

i
i

i

 （i=1,2）                                                            (5) 

Let u0i and ui be the vector and the unit vector of the upper 

beam gi. It is known that both u0i and ri locate in the same 

plane Qi and let F be the vector which is perpendicular to Qi. 

Based on the geometric condition, u0i, ui can be derived as 

follows: 

0i i
F = n r ,  0

T

i z z l m n
z z z   n F, n  

0

0

i
i

i







（i=1,2）                                                    (6) 

Let Bi1Bi = BiBi2 = D, bibi1 = bibi2 = d, rij be the vector from 

Bij to bij. rij are expressed as follows: 

1 2i i i i i
D B B B B n , 1 1i i i i
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d D


 



r = r + n

r = r + n




（i=1,2）                               (7) 

Let δi be the unit vector of ri, let δij be the unit vector of rij. 

The formulae for solving ri, rij, δi, and δij are derived from 

Equations (4)–(7) as follows: 

iji
i ij

i ij
r r

 
rr

,                                                         (8) 

2 2 2 2

i ix iy iz
r r r r   ， 2 2 2 2

ij ijx ijy ijz
r r r r                                      

Thus, r3 is the vector of SPR active leg. rij(i=1,2,j=1,2) are 

the vectors of active leg in planer limbers. 

IV. KINEMATICS ANALYSIS OF THE 5-DOF PM WITH 2QI AND 

STATICS MODEL  

A kinematics model of the planar limb Qi are shown in Fig 

.1（b）. Let V, A, v, ω, a, and ε be the general forward velocity, 

the general forward acceleration, the linear velocity, the 

angular velocity, the linear acceleration and the angular 

accelerations of m at o, respectively. They are expressed as: 

   
   
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v a
V = ,  A =
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v = a =                       (9) 

Let vbi be a velocity vector of m at bi, vbij be a velocity 

vector of the upper beam gi at bij, ωbi be the angular velocity of 

gi, vri  be a scalar velocity along ri, vrij be the input scalar 

velocity along rij, ωri be the angular velocity of ri; ωrij  be the  

angular velocity of rij, Let ωi1 and Ri1 be a scalar angular 

velocity of the lower beam Gi about B at Bi and its unit vector; 

ωi2 and Ri2 be a scalar angular velocity of ri about Gi at Bi and 

its unit vector;ωi3 and Ri3 be the scalar angular velocity of ri 

about gi  at bi and its unit vector and there is Ri3 || Ri2. Let ωi4 

and Ri4 be the scalar angular velocity of vertical rod about m 

at bi and its unit vector. Let ωi5 and Ri5 be the scalar angular 

velocity of gi about vertical rod  at bi and its unit vector and 

there are Ri3⊥Ri4, Ri3⊥Ri5 .They can be expressed as 

follows: 

5
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A. General input velocity Vrij and angular 

velocity ωrij. 

vrjj (i=1, 2, j=1, 2) and Vrij be the input velocity along rjj and 

the general velocity input of the planer limbs. Let ωrij be the 

angular velocity of rij. The formulae for solving ωrij and vrjj 

can be derived as follows: 

rij ij J V    （i=1,2; j=1,2）                                    (11) 
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 
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T
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
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J J J J J
            

(13) 

Here, Jωij is a 3×6 matrix; Jvij is a 1×6 matrix; Jrij is a 4×6 

matrix. 
In the SPR type active leg, let vr3 be the input velocity 

along r3, Let ωr3 be the angular velocity of r3.The formulae for 

solving vr3 and ωr3 have been derived in [10] as follows: 

3 3 3 3( )r rv     v e J V, 
3 3 3 3 1 6[ ]T
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(15) 

Here, Jr3 is a 1×6 matrix; Jω3 is a 3×6 matrix. 

In the 5–DOF PM there are constrained wrench (Fy, Tc) in 

the SPR type active leg limited the movement of the PM. The 

constrained wrench do not do any power during the 

movement of PM. Let f3 be the unit vector of Fy, d3 is the 

vector of the arm from o to Fy, thus the constrained wrench 

have been derived in [12].An auxiliary velocity equation is 

derived as: 

3 3 3 1 6
0= ( )T T

vy vy 
   J V J f d f             (16)   

Here, Jvy is a 1×6 matrix. By combining Eq. (13), (14) with 

Eq. (16), a general inverse velocity vr can be derived as: 
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Here, J is a 6×6 Jacobian matrix of the 5–DOF PM with 2 

planer limbers.
 

B. Acceleration of the PM and statics 

model 

The establishment of acceleration model of the proposed 

PM is a prerequisite to establish dynamics model of the 

proposed PM. Let arij be the input scalar acceleration along rij. 

By differentiating Eq. (17) with respect to time, the 

acceleration matrix of the active legs equation is derived as: 
T= 

rij
+a J A V HV                                                          (18) 

 11 12 21 22 3
 0

T

rij r
a a a a aa  

Here, H is a 6 × 6 × 6 Hessian matrix of the 5-DOF PM 

with 2Qi.
 

Let Fr3 be the active force which is applied on r3, Frij (i = 1, 

2; j = 1, 2) be the active force which is applied on rij. Let (F, T) 

be workload wrench which is applied on moving platform m 

at o. When neglected mass and inertia moment of moving 

Links, based on the principle of virtual work, the statics 

formula of the 5–DOF PM with 2 planer limbers is derived as 

follow: 
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                         (19) 

Here J is a 6×6 Jacobian matrix of the 5–DOF PM. J has 

been solved in the Equations (17). Given the workload that 

applied on the moving platform, the driving force Frij (i = 1, 2; 

j = 1, 2) and Fr3 along active legs can be solved using 

Equations (19). 

V. DYNAMICS OF 5-DOF PM 

A. Kinematics of the 5-DoF PM 

The kinematics models of the active leg rij in planar limbs 

and active leg rr3 in SPR limb, are shown in Fig. 2(a).The 

active leg r3 in SPR limbs is composed of a piston rod pr3 and a 

cylinder qr3. Let lqr3 be the distance from the mass center of qr3 

to B3, Let lpr3 be the distance from the mass center of pr3 to b3. 

Let π be one of qij , pij , qr3 , pr3 , gi , Gi . Let Vπ, Aπ , vπ,ω π , aπ 

, επ  be the general velocity, the general acceleration, the linear 

velocity, the angular velocity, the linear acceleration and 

angular acceleration of π at its mass center, respectively. They 

are derived as follows: 

3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3

( ) ( )

( )
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                        （20

） 
Differentiating Equation (20) with respect to time, it leads 

to: 

3 3 3 3 3 3
( ( ) )

pr r r r mr
r l    a ν ω δ                          （21

） 

Vpr3 , Apr3 are solved from Equations (20) and (21) as 

follows: 

3 33 3

3 3

3 33 3

= = = =
pr prpr pr

pr pr

pr prr r
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V A
  

   （22

） 

Each of the linear legs is composed of a piston and a 

cylinder. The piston does not spin about the cylinder’s axis. 

So the angular velocity and angular acceleration of piston is 

equivalent to that of cylinder. This condition is also available 

for linear legs in planner limbers. Similarly, Vqr3, Aqr3 , are 

derived as follows:

 3 3 3 3 3 3 3

3 3

3 3

qr r qr qr r

qr ωr3 vqr3

vr3 qr ωr3
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                           （23

） 

Differentiating Equation (20) with respect to time, aqr3 are 

solved as follow: 

3 3 3 3
( )

qr qr r
l  a ω δ                                           （24

） 

Vpr3 , Apr3  can be expressed from Equations (23) and (24) 

as follows: 
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      
      
         

，
v av a

V A
  

          （25

） 

In the planar limbs, Let lpij be the distance from the mass 

center of pij to bij, The formulae for solving Vpij and Apij have 

been derived as follows: 

( ) ( )
pij rij rij ij pij ij rij ij ij pij rij ij

r l r l       ων ν ω δ δ δ

 ( )
ij νij ij pij ij ωij vpij

r l   ˆδ J V δ J V J V                           (26) 

Differentiating Equation (26) with respect to time, apij are 

solved as follow: 

( ( ) )
pij rij rij ij pij ij

r l    a ν ω δ                                   (27) 

Vpij , Apij can be expressed from Equations (26) and (27) as 

follows: 

= = = =
v v a a

V A
pij pij pij pij

pij pij

pij rij pij rij

       
       
       

，
   

            (28) 

Let lqij be the distance from the mass center of qij to Bij. Vpij 

and Apij  are solved as follows: 

qij rij qij ij qij rij ij qij ij ωij vqij
l l l      ˆv ω δ ω δ δ J V J V      (29) 

Differentiating Equation (29) with respect to time, aqij are 

solved as follow: 

( )
qij qij rij ij

l  a ω δ                                                       (30) 

Vqij , Aqij can be expressed from Equations (29) and (30) as 

follows:
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= = = =
v v a a

V A
qij qij qij qij

qij qij

qij rij qij rij

       
       
              

，
   

                   

(31)
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Figure 2 Kinematics model of active links (a) and dynamic model of the. 5-DOF PM (b) 

 

 

 

The mass center of upper beam gi is coincident to the 

vertices bi of the moving platform, so the linear velocity of 

upper beam is equivalent to that of the vertices bi. vgi , ωgi are 

represented and solved as follows: 

 3 3 3 6
= = =

gi bi i vgi vgi i 
  + ˆv v ν ω e J V   ,   J E e  (32) 

4 4 5 5gi i i i i
 = + +ω ω R R                          (33) 

= = =
gi gi gi gi

gi gi

gi gi gi gi

       
       

              

，
v v a a

V A
   

               (34) 

The mass center of Gi is in the same location with Bi .so the 

linear velocity and linear acceleration of Gi are zero. VGi , AGi  

are solved as follows: 

1
= = =

Gi i i1 i1 i1 ωGi R R J V J V                                           (35) 

1 3 1 3
= = =

Gi Gi

Gi Gi

Gi Gi Gi Gi

        
       

       

0 0
，

v a
V A

   
                 (36) 

B. Dynamics of the 5-DoF PM with two planner 

limbers 

The dynamics models of the active rod rij in planar limbs 

and active rod r3 in SPR limb, are shown in Fig. 2（b）. Let (Fqi 

, Tqi ) and Gqi be the inertia wrench and gravity of the qi (qi 

=qij, pij,qr3, pr3, gi, Gi ). Respectively, Let mqi and Iqi be the 

mass and the inertia moment tensor matrix of the qi at its mass 

center. Let (Fs, Ts ) be the operating wrench exerted on m at o 

in {m }. Let mo be the mass of the moving platform m ,(Fm , Tm 

) and Gm be the inertia wrench and the gravity of the platform 

m. Im be the mass and inertia moment tensor matrix of the 

moving platform m about point o;  g be a gravity acceleration. 

These dynamic parameters can be expressed as follows: 

( )

( )

m o

m o m o o

qi qi

qi qi qi qi qi qi qi qi qi

m

m ,

m

m ,




     




      

G g

F a T I ε ω I ω

G g

F a T I ε ω I ω

            (37) 

When ignoring the friction of all the joints in the 5-DOF 

PM, the dynamic workload wrench (F,T) includes the statics 

wrench (Fs , Ts ), the inertia wrench (Fm, Tm ) and the gravity 

Gm of the platform, the equivalent inertia wrench and the 

gravity of active legs, the equivalent inertia wrench and the 

gravity of lower beam Gi and upper beam gi . Thus, based on 

the principle of virtual work, a power equation is derived as 

follows: 
TTT

2 2

1 1

T T T
2 2 2 2

1 1 1 1

+

pij pijm s m

pij

i jm s pij

qij qij gi gi Gi Gi

qij gi Gi

i j i i Giqij gi

 

   

    
            

      
     

        



  

F GF F GF
V V V

T TT T

F G F G F G
V V V

TT T

 

3 3 3 3

3 3

3 3

0

T

pr pr qr qr

pr qr

pr qr

    
     
      

F G F G
V V

T T
                     (38) 

Based on the above established equation, the dynamic 

workload can be mapped into a part of (F, T). When 

considering the friction of all the joints in the 5-dof PM, the 

damping loads of the joints should be transformed into a part 

of the dynamic workload wrench (F, T) by counting the 

efficiency η of the PM. Thus, a formula is derived for solving 

the dynamic workload wrench applied on active links from 

Equations (19) and (38) as bellow: 
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(39) 

 

VI. SOLVED EXAMPLES OF 5-DOF PM 

Some given dimensions of the 5-DOF PM with the inside 

active legs and a force applied on the moving platform are 

listed in Table 1. The velocity, acceleration of active legs are 

given in Table 1.A program is compiled in Matlab based on 

relative derived equations. The statics and dynamics are 

solved using the compiled program in order to verify all 

derived equations. The displacement and Euler angles of 

themoving platform are solved, see Fig 3(a)-(b). The static 

active forces of active legs are solved, see Figure 3(c). The 

analytic solutions of the dynamic active forces of active legs 

are obtained when considering (Fs, Ts ) and all inertia wrench 

and the gravity, see Figure 3(d). All analytical solutions are 

verified using a simulation mechanism constructed in an 

advanced CAD software. 

Table 1.Given parameters of the mechanism, input velocity of 

PM and workloads applied on m 

parameter value parameter value 

L/mm 240 Fs / N (0,0,1000) 

l/mm 120 Ts/ (N• m) (0,0,10) 

D/mm 40 Io/kg mm2 2000 

g/(m/s2) 9.8 Igi/kg mm2 500 

d/mm 12.5 IGi/kg mm2 500 

mo/kg 10 lqr3 lqij/ mm 100 

mqij  mqr3 / kg 5 lpr3 lpij/ mm 100 

mpij  mpr3 / kg 5 vr11(mm/s) 2.5/2*t2 

mgi / kg 3 vr12(mm/s) 2.8 /2*t2 

mGi / kg 3 vr21(mm/s) 3.3 /2*t2 

Ipij Ipr3 /kg mm2 1000 vr22(mm/s) 3.6/2*t2 

Iqij Iqr3 /kg mm2 1000 vr3(mm/s) 0.8/2*t2 

 

 

 
Figure 3 Analytic solutions of dynamics of 5-DOF PM 

VII. CONCLUSIONS  

A novel 5-DoF parallel manipulator is proposed. The 

standard Jacobian matrix, the standard Hessian matrix, the 

dynamics formulae are established for the proposed 5-DoF 

PM. When given the workload wrench applied on the moving 

platform the coordinative dynamic active force applied on 

active legs can be solved by considering inertia wrench and 

mass of the PM. The analytic solutions of coordinative 

dynamics for the manipulator are verified by its simulation 

solutions. This novel 5-DOF PM has potential applications 

for forging operator, rescue missions, industry pipe 

inspection, manufacturing and fixture of parallel machine 

tool, CT-guided surgery, health recover and training of human 

neck or waist, and micro–Nano operation of bio-medicine, 

and assembly cells. Theoretical formulae and results provide 

foundation for its structure optimization, control, 

manufacturing and applications. The stiffness of this PM 

should be studied in the future. 
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