Köthe-Toeplitz And Topological

\[c_0^2(X,\lambda,p), \ c^2(X,\lambda,p) \text{ and } l_\infty^2(X,\lambda,p) \]

J.K. Srivastava, R.K. Tiwari

Abstract— This paper is in continuation of [4]. Here we characterize generalized Köthe-Toeplitz duals of the matrix classes \(c_0^2(X,\lambda,p) \), \(c^2(X,\lambda,p) \) and \(l_\infty^2(X,\lambda,p) \) and by application of these duals of the matrix spaces \(c_0^2(X,\lambda,p) \) and \(c^2(X,\lambda,p) \).

Subject Classification— Primary -46A45 ,Secondary- 46A15.

Index Terms— Locally convex space , matrix space ,generalized Köthe-Toeplitz duals and topological duals.

I. INTRODUCTION

Concerning the notations and terminology and results, we follows [1,3]. Let \((X, \mathcal{S}) \) be a Hausdorff locally convex topological vector space (lc TVS) over the field of complex numbers \(C \) and \(X^* \) be its topological dual . We denote \(U \) by the fundamental system of balanced, convexandana absorbingneighbourhoodsofzerovecto \(\theta \) to denote \(g_0 \) to denote the gauge (Minkowski functionals) generating the topology \(\mathcal{S} \) of \(X \).

By a generalized matrix , a generalized double sequence we mean a double sequence \(\bar{x} = (x_{mn}) \) with elements from \(X \). Let \(p = (p_{mn}) \) be a double sequence of strictly positive real numbers and \(\lambda = (\lambda_{mn}) \) be a double sequence of non-zero complex numbers.Throughout the paper we shall take \(p = (p_{mn}) \in l_\infty^2 \), space all bounded scalar double sequences , \(H = H(p) = \mathcal{B}(X^*_{mn},P_{mn}) \) and \(M = M(p) = \max(1,H) \). For \(x \in X \), \(S_{mn}(x) \) denotes the double sequence whose all terms are \(x \), (see [4]).

We now consider the dual system \(\langle X, X^* \rangle \) with respect to the canonical bilinear functional \(\langle x, f \rangle \) which is the value of \(f \in X^* \) at \(x \in X \). If \(A \subseteq X \) then polar of \(A \) is denoted to be By space of vector double sequences \(E(X) \) we mean a vector space of double sequences in \(X \) over \(C \) with respect to coordinatewise addition and scalar multiplication . The double summation \(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \) denote by \(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \) is taken in the sense \(\lim_{n \to \infty} \sum_{2 \leq m+n \leq N} \).

We take \(X^* \) with the strong topology \(\beta(X^*,X) \) generated by the family \(D^\prime = \{ g_{B^0} : B \in B \} \) where \(B \) is the collection of all bounded sets (or \(\sigma(X, X^*) \)-bounded sets) \(B \) of \(X \), \(B^0 \) is the polar of \(B \) with respect to bilinear form \(\langle x, f \rangle = f(x) \) of the pairing \(\langle X, X^* \rangle \) and for \(f \in X^* \).

\[g_{B^0}(f) = \text{ sup} \{ |\langle x, f \rangle| : x \in B \} \].

A subset \(A \) of linear functional which are defined on lcTVS \(X \) is called equicontinuous if there exists \(U \subseteq U^0 \) such that \(A \subseteq U^0 \). A locally convex topological vector space \(X \) is said to be sequentially barrelled if every sequence \{ \(f_{mn} \) \} \subseteq X^* which converges to \(\theta \) in \(\beta(X^*,X) \) is equicontinuous . For \(U \subseteq U^0 \), the set \(U^0 \) is balanced ,bounded ,convex and \(\beta(X^*,X) \)-complete subset of \(X^* \). Let \(N(U) = \{ x \in X : g_U(x) = 0 \} \). For \(p = (p_{mn}) \) and \(\lambda = (\lambda_{mn}) \) in [4] we have introduced and studied the following classes :

\[c_0^2(X,\lambda,p) = \{ \bar{x} = (x_{mn}) : x_{mn} \in X, m,n \geq 1 \text{ and } (g_U(\lambda_{mn} x_{mn}))^p_{mn} \to 0 \text{ as } m+n \to \infty \text{ for each } g_U \in D \} \];

\[c^2(X,\lambda,p) = \{ \bar{x} = (x_{mn}) : x_{mn} \in X, m,n \geq 1 \text{ and } (g_U(\lambda_{mn} x_{mn} - x))^{p_{mn}} \to 0 \text{ as } m+n \to \infty \text{ for each } g_U \in D \} \];
Köthe-Toeplitz And Topological \(c^2_0(X,\lambda,\mu) \), \(c^2(X,\lambda,\mu) \) and \(l^2_\infty(X,\lambda,\mu) \)

(1.3) \(\tilde{x} = (x_{mn}) : x_{mn} \in X, m, n \geq 1 \) and

\[
\sup_{m,n} (g_{U}(x_{mn} \lambda_{mn}))^{p_{mn}} < \infty \quad \text{for each } g_{U} \in D.
\]

Then the quotient spaces \(X_U = X/ N(U) \) is a normed space with respect to the norm \(\tilde{g} \) where \(\tilde{g}(x) = g_{U}(x) \), \(x(U) \) being the equivalence class in \(X_U \) corresponding to the element \(x \in X \). The subspace \(X^*_U \) is a Banach space with respect to the norm \(g_{U}(f) = \sup \{ |(x,f)| : x \in U \} \). Further we have

THEOREM 1.1: The Banach space \((X^*_U, g_{U}) \) is the topological dual of \((X_U, \tilde{g}_U) \) for each \(U \in U \).

We now define the generalized Köthe-Toeplitz duals i.e., generalized \(\alpha-, \beta-, \text{ and } \gamma- \) duals for a class \(E(X) \) of vector double sequences by

\[(E(X))^\alpha = \{ \tilde{f} = (f_{mn}) : f_{mn} \in X^*, m, n \geq 1 \text{ and } \sum \sum |\langle x_{mn}, f_{mn} \rangle| < \infty \text{ for all } \tilde{x} = (x_{mn}) \in E(X) \}; \]

\[(E(X))^\beta = \{ \tilde{f} = (f_{mn}) : f_{mn} \in X^*, m, n \geq 1 \text{ and } \sum \sum |\langle x_{mn}, f_{mn} \rangle| \text{ is convergent for all } \tilde{x} = (x_{mn}) \in E(X) \}; \]

\[(E(X))^\gamma = \{ \tilde{f} = (f_{mn}) : f_{mn} \in X^*, m, n \geq 1 \text{ and } \sup \sum \sum_{2 \leq m + n \leq N} |\langle x_{mn}, f_{mn} \rangle| < \infty \text{ for all } \tilde{x} = (x_{mn}) \in E(X) \}. \]

DEFINITION 1.2: Let \(E(X) \) be a space of vector double sequences. \(E(X) \) is said to be normal if for \(\tilde{x} = (x_{mn}) \in E(X) \) and for every scalar double sequence \(\tilde{\alpha} = (\alpha_{mn}) \) with \(|\alpha_{mn}| \leq 1, m, n \geq 1 \), the double sequence \(\tilde{\alpha} \tilde{x} = (\alpha_{mn} x_{mn}) \in E(X) \). (ii) \(E(X) \) is said to be monotone if it contains the canonical pre – images of all its step spaces (cf.[2]).

On the lines of scalar single sequences [2], we can easily prove:

THEOREM 1.3: A space \(E(X) \) of vector double sequences is

(i) normal if and only if \(l^2_\infty(E(X)) \subseteq E(X) \); and

(ii) monotone if and only if \(m^2_0(E(X)) \subseteq E(X) \),

where \(m^2_0 \) is the space of scalar double sequences spanned by all double sequences formed by zeros and ones.

Further we easily get:

THEOREM 1.4:

(i) \((E(X))^\alpha \subseteq (E(X))^\beta \subseteq (E(X))^\gamma \).

(ii) \((E(X))^\alpha = (E(X))^\beta \) if \(E(X) \) is monotone, and

(iii) \((E(X))^\alpha = (E(X))^\gamma \) if \(E(X) \) is normal.

II. KöTHE – TOEPLITZ DUALS

In this section we characterize \(\alpha-, \beta-, \text{ and } \gamma- \) duals \(c^2_0(X,\lambda,\mu) \), \(c^2(X,\lambda,\mu) \) and \(l^2_\infty(X,\lambda,\mu) \) are normal; and

(ii) \(c^2(X,\lambda,\mu) \) is not monotone.

We now define

\[(2.1) \quad M^2_0(X,\lambda,\mu) = \{ \tilde{f} = (f_{mn}) : f_{mn} \in X^* \}, \]

\(m, n \geq 1\) and for each \(B \in B \) there exists an integer \(K > 1 \) such that \(\sum \sum |\lambda|^{-1} g_{E}^{-1}(f_{mn}) K^{-1/p_{mn}} < \infty \}. \)

THEOREM 2.1: If \(X \) sequentially barrelled lcTVS then

\[(c^2_0(X,\lambda,\mu))^\alpha = M^2_0(X^*,\lambda,\mu). \]

COROLLARY 2.3: If \(X \) is sequentially barrelled lcTVS then

\[(c^2_0(X,\lambda,\mu))^\beta = c^2_0(X^*,\lambda,\mu) \cap S(X^*,\lambda,\mu)^2 \]

\[(c^2_0(X,\lambda,\mu))^\gamma = c^2_0(X^*,\lambda,\mu) \cap S(X^*,\lambda,\mu)^2 \].

THEOREM 2.4: Let \(X \) be sequentially barrelled lcTVS. Then

(i) \((c^2_0(X,\lambda,\mu))^\alpha = M^2_0(X^*,\lambda,\mu) \cap S(X^*,\mu, l^2_\infty) \]

(ii) \((c^2_0(X,\lambda,\mu))^\beta = M^2_0(X^*,\lambda,\mu) \cap S(X^*,\lambda, (cs))^2 \)

(iii) \((c^2_0(X,\lambda,\mu))^\gamma = M^2_0(X^*,\lambda,\mu) \cap S(X^*,\lambda, (bs))^2 \).

COROLLARY 2.5: If \(\inf \ p_{mn} > 0 \) and \(X \) is sequentially barrelled lcTVS then
\[
\begin{align*}
\left(c^2_0 \left(X, \lambda, p \right) \right)^\alpha &= \left\langle x, f \right\rangle + \sum \sum \left\langle x_{mn}, f_{mn} \right\rangle \\
\text{where } l^2_1 \left(X^*, \lambda \right) &= \{ f = (f_{mn}) : f_{mn} \in X^*, m, n \}, \\
\sum \sum |\lambda_{mn}|^{-1} g_{B}^{\theta} (f_{mn}) < \infty \text{ for each } B \in B.
\end{align*}
\]

For the next theorem we define
\[
(2.2) M^2_{\infty}(X^*, \lambda, p) = \{ f = (f_{mn}) \in X^*, m, n \geq 1 \text{ such that for each } B \in B \text{ and for each } K > 1, \sum \sum |\lambda_{mn}|^{-1} g_{B}^{\theta} f_{mn} K^{-1/p_{mn}} < \infty \}.
\]

THEOREM 2.6: If \(X \) is sequentially barreled lc TVS then
\[
(l^2_{\infty}(X, \lambda, p))^{\alpha} = M^2_{\infty}(X^*, \lambda, p).
\]

Moreover from Lemma 2.1 and Theorems 1.4 and 2.6, we easily get:

COROLLARY 2.7: If \(X \) is sequentially barreled lcTVS then
\[
(l^2_{\infty}(X, \lambda, p))^{\beta} = (l^2_{\infty}(X, \lambda, p))^{\gamma} = M^2_{\infty}(X^*, \lambda, p).
\]

III. CONTINUOUS DUAL

In the following Theorems, continuous duals of \(c^2_0(X, \lambda, p) \) and \(c^2(X, \lambda, p) \) are characterized by applications of the results concerning Köthe – Toeplitz duals obtained in section 2.

THEOREM 3.1: If \(X \) is sequentially barreled lcTVS then the topological dual \((c^2_0(X, \lambda, p))^* \) of \((c^2_0(X, \lambda, p)) \) is isomorphic to \(M^2_{\infty}(X^*, \lambda, p) \).

THEOREM 3.2: If \(\inf P_{mn} > 0 \) and \(X \) is sequentially barreled lcTVS then \(F \in c^2(X, \lambda, p) \), the topological dual of \((c^2(X, \lambda, p), \sigma g) \), if and only if there exists \(f \in X^* \) and \(\tilde{f} = (f_{mn}) \in l^2_1(X^*, \lambda) \) such that for each \(\tilde{x} = (x_{mn}) \in c^2(X, \lambda, p) \)
\[
F(\tilde{x}) = \left\langle x, f \right\rangle + \sum \sum \left\langle x_{mn}, f_{mn} \right\rangle.
\]

REFERENCE