

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-2, Issue-12, December 2015

 70 www.ijeas.org



Abstract— Mining patterns from datasets having fuzzy time

attributes is an important data mining problem. Some of these

mining task are finding locally frequent sets, local association

rules etc Most of the earlier works were mainly devoted on

mining non-fuzzy temporal datasets .In this article, we propose a

method extracting locally frequent itemsets from fuzzy temporal

datasets. The efficacy of the method is established with the help

of an experiment conducted on a synthetic dataset.

Index Terms— Core of a fuzzy number, Data mining,

frequent sets, fuzzy membership function, -cut.

I. INTRODUCTION

 Mining association rules from datasets has been defined

initially [1] by R. Agarwal et al for application in large super

markets datasets. Super market datasets are temporal in the

sense that every transaction in dataset is associated with the

time of transaction. Mining frequent itemsets from such

dataset is an important data mining problem.

 In this paper, we consider datasets, where the time of

transaction is imprecise i.e. fuzzy temporal. Such datasets are

termed as fuzzy temporal. In [2], authors proposed a method

of finding locally frequent itemsets from such dataset. The

work done in [2] is mainly theoretical and little work have

been done on the implementation side. In this article, we

propose to work on the implementation of the algorithm [2].

The implementation is a trie-based implementation. We use

here a synthetic dataset to show the efficacy of the algorithm.

 The paper is organized as follows: In section-II we give a

brief discussion on the recent works in Temporal Data Mining

and fuzzy temporal data mining. In section-III we describe the

terms and notations used in this paper. In section-IV, we give

the algorithm proposed [2]. In section-V, we give the

implementation detail along with experimental results. We

conclude with conclusion and lines for future work in

section-VI.

II RECENT WORKS

Agrawal et al [1] formulated the problem of association rules

discovery. In[1], a method for the discovery of association

rules was given, which is known as the A priori algorithm.

Temporal Data Mining is now an important extension of

conventional data mining and has recently been able to attract

more people to work in this area. Considering the time aspect,

more interesting patterns time dependent can be extracted.

Primarily there are two broad directions of temporal data

mining [3]. One concerns the extraction of causal

relationships among temporally oriented events. The other

concerns the extraction of similar patterns within the same

time sequence or among different time sequences. The name

Manuscript received.

 Fokrul Alom Mazarbhuiya, College of Computer Science and IT, Albaha

University, Albaha, KSA

sequence mining is normally used for the later problem. In [4]

the authors discussed the problem of recognizing frequent

episodes in an event sequence.

 The association rule discovery process has been extended

by incorporating temporal aspects. In temporal association

rules each rule has associated with it a time interval in which

the rule holds. The problem is to find frequent itemsets which

are frequent certain valid time periods then extracting rules

from such frequent itemsets. In [5], [6], [7] and [8], the

problem of temporal data mining is addressed and techniques

and algorithms have been developed for this. In [9] an

algorithm for the discovery of temporal association rules is

described.. In [10, 11], an efficient method for finding locally

and periodically frequent sets and periodic association rules

are discussed. In [2], authors proposed a method of finding

locally frequent itemsets from fuzzy temporal data.

III TERMS,NOTATION AND SYMBOL USED

A Some Definitions related to Fuzziness

A fuzzy interval is actually a fuzzy number with a flat region.

We denote a fuzzy interval A is by A = [a, b, c, d] where a < b

< c < d and A(a) = A(d) = 0, A(x) = 1 for all x [b, c]. A(x)

for all x [a, b] is known as left reference function and A(x)

for x  [c, d] is known as the right reference function. [12].

An -cut of the fuzzy interval [t1-a, t1, t2, t2+a] is a closed

interval [t1+(-1).a, t2+(1-).a].

The core of a fuzzy number A is the set of elements of A

having membership value one i.e.

 Core(A) = {(x, A(x); A(x) = 1}

For every fuzzy set A,

A = 
]1,0[

 A

where A(x) = .

A(x), and A is a special fuzzy set.

For any two fuzzy sets A and B and for all [0, 1],


(AB) =


A 


B

 
(AB) =


A 


B

For any two fuzzy numbers A and B, the membership

functions A(x) and B(x) are said to be similar similar to each

other if the slope of the left reference function of A(x) is equal

to the that of B(x) and the slope of right reference of A(x) is

equal that of B(x). Thus for any two fuzzy numbers A and B

having similar membership functions

 

A = 


B, [0, 1]

B Some Definitions related to Association Rule Mining over

Fuzzy time period

Suppose that T = <to, t1,…………> is a sequence of imprecise

or fuzzy time stamps over which a linear ordering < is

defined. We also assume that all the fuzzy time stamps are

having similar membership functions. Let I be a finite set of

items and the transaction dataset D is a collection of

transactions with the property that each transaction has two

Mining Local Patterns from Fuzzy Temporal Data

Fokrul Alom Mazarbhuiya

Mining Local Patterns from Fuzzy Temporal Data

 71 www.ijeas.org

parts, one subset of the itemset I and the other fuzzy

time-stamp indicating the approximate time in which the

transaction had taken place. We assume that D is ordered in

the ascending order of the core of fuzzy time stamps. A

transaction is said to be in the fuzzy time interval [t1-a, t1, t2,

t2+a] if the -cut of the fuzzy time stamp of the transaction is

contained in -cut of [t1-a, t1, t2, t2+a] for some user’s

specified value of .

 The local support of an itemset in a fuzzy time interval

[t1-a, t1, t2, t2+a] is defined as the ratio of the number of

transactions in the time interval [t1+(-1).a, t2+(1-).a]

containing the itemset to the total number of transactions in

[t1+(-1).a, t2+(1-).a] for the whole dataset D for a given

value of . The notation],,,[2211 atttatSup  (X) is used to

denote the support of the itemset X in the fuzzy time interval

[t1-a, t1, t2, t2+a]. Given a threshold  we say that an itemset X

is frequent in the fuzzy time interval [t1-a, t1, t2, t2+a] if

],,,[2211 atttatSup  (X)  (/100)* tc where tc denotes the total

number of transactions in D that are in the fuzzy time interval

[t1-a, t1, t2, t2+a].

IV ALGORITHM PROPOSED

A Generating Locally Frequent Sets

Before proceeding further, for the sake of convenience, we

describe the algorithm proposed in [2].

While constructing locally frequent sets, with each locally

frequent set a list of fuzzy time-intervals is maintained in

which the set is frequent. Two user’s specified thresholds 

and minthd are used for this. During the execution of the

algorithm while making a pass through the database, if for a

particular itemset the -cut of its current fuzzy time-stamp,

[

Lcurrent,


Rcurrent] and the -cut, [


Llastseen,


Rlastseen]

of its fuzzy time, when it was last seen overlap then the current

transaction is included in the current time-interval under

consideration which is extended with replacement of

Rlastseen by


Rcurrent; otherwise a new time-interval is

started with

Lcurrent as the starting point. The support count

of the item set in the previous time interval is checked to see

whether it is frequent in that interval or not and if it is so then

it is fuzzified and added to the list maintained for that set.

Also for the locally frequent sets over fuzzy time intervals, a

minimum core length of the fuzzy period is given by the user

as minthd and fuzzy time intervals of core length greater than

or equal to this value are only kept. If minthd is not used than

an item appearing once in the whole database will also

become locally frequent a over fuzzy point of time.

Procedure to compute L1, the set of all locally frequent item

sets of size 1.

For each item while going through the database we always

keeps an -cut

lastseen which is [


Llastseen,


Rlastseen] that

corresponds to the fuzzy time stamp when the item was last

seen. When an item is found in a transaction and the fuzzy

time-stamp is tm and if its -cut

tm=[


Ltm,


Rtm] has empty

intersection with [

Llastseen,


Rlastseen], then a new time

interval is started by setting start of the new time interval as

Ltm and end of the previous time interval as


Rlastseen. The

previous time interval is fuzzified provided the support of the

item is greater than min-sup. The fuzzified interval is then

added to the list maintained for that item provided that the

duration of the core is greater than minthd. Otherwise


Rlastseen is set to


Rtm, the counters maintained for

counting transactions are increased appropriately and the

process is continued.

 Following is the algorithm to compute L1, the list of locally

frequent sets of size 1. Suppose the number of items in the

dataset under consideration is n and we assume an ordering

among the items.

1)

2) Algorithm 1

C1 = {(ik,tp[k]) : k = 1,2,…..,n}

 where ik is the k-th item and tp[k] points to a list of fuzzy

time intervals initially empty.}

 for k = 1 to n do

 set

lastseen[k]=;

 set itemcount[k]and transcount[k] to zero for each

transaction t in the database with fuzzy time stamp tm

do

 {for k = 1 to n do

 { if {ik}  t then

 { if(

lastseen[k] == )

 {

lastseen[k] =


firstseen[k] =


tm;

 itemcount[k] = transcount[k] = 1;

 }

 else

 if([

Llastseen[k],


Rlastseen[k]] [


Ltm[k],


Rtm[k]])

 {

Rlastseen[k]=


Rtm[k]; itemcount[k]++;

 transcount[k]++;

 }

 else

 { if (itemcount[k]/transcount[k]*100  )

 fuzzify([

Llastseen[k],


Rlastseen[k]],[0, 1])

 if(core(fuzzified interval) minthd)

 add(fuzzified interval) to tp[k];

 itemcount[k] = transcount[k] = 1;

 lastseen[k] = firstseen[k] = tm;

 }

 }

 else transcount[k]++;

 } // end of k-loop //

 } // end of do loop //

 for k = 1 to n do

 { if (itemcount[k]/transcount[k]*100)

 fuzzify([

Llastseen[k],


Rlastseen[k]], [0, 1])

 if(core(fuzzified interval) minthd)

 add(fuzzified interval) to tp[k];

 if(tp[k] != 0) add {ik, tp[k]} to L1

 }

 fuzzify([

a,

b], )

 { fuzzified interval= 
]1,0[

],[


 ba ;

 where [a, b](x) = .

[a, b](x)

 return(fuzzified interval)

 }

Two support counts are kept, itemcount and transcount. If the

count percentage of an item in an -cut of a fuzzy time

interval is greater than the minimum threshold then only the

set is considered as a locally frequent set over fuzzy time

interval.

 L1 as computed above will contain all 1-sized locally

frequent sets over fuzzy time intervals and with each set there

is associated an ordered list of fuzzy time intervals in which

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-2, Issue-12, December 2015

 72 www.ijeas.org

the set is frequent. Then A priori candidate generation

algorithm is used to find candidate frequent set of size 2. With

each candidate frequent set of size two we associate a list of

fuzzy time intervals that are obtained in the pruning phase. In

the generation phase this list is empty. If all subsets of a

candidate set are found in the previous level then this set is

constructed. The process is that when the first subset

appearing in the previous level is found then that list is taken

as the list of fuzzy time intervals associated with the set. When

subsequent subsets are found then the list is reconstructed by

taking all possible pair wise intersection of subsets one from

each list. Sets for which this list is empty are further pruned.

 Using this concept we describe below the modified

A-priori algorithm for the problem under consideration.

 Algorithm 2

Modified A priori

B. Initialize

 k = 1;

C1 = all item sets of size 1

L1 = {frequent item sets of size 1 where

 with each itemset {ik} a list tp[k] is maintained which gives

all time fuzzy

intervals in which the set is frequent}

L1 is computed using algorithm 1.1 */

for(k = 2; Lk-1   ; k++) do

 { Ck = apriorigen(Lk-1)

 /* same as the candidate generation method of the A priori

algorithm setting tp[i] to zero for all i*/

 prune(Ck);

 drop all lists of fuzzy time intervals maintained with the sets

in Ck

 Compute Lk from Ck.

//Lk can be computed from Ck using the same procedure used

for computing L1 //

 k = k + 1

 }

 Answer = 
k

kL

Prune(Ck)

{Let m be the number of sets in Ck and let the sets be s1, s2,…,

sm. Initialize the pointers tp[i] pointing to the list of fuzzy

time-intervals maintained with each set si to null

for i = 1 to m do

 {for each (k-1) subset d of si do

 {if d  Lk-1 then

 {Ck = Ck - {si, tp[i]}; break;}

 else

 { if (tp[i] == null) then set tp[i] to point to the list of

fuzzy time intervals maintained for d

 else

{ take all possible pair-wise intersection of fuzzy time

intervals one from each list,one list maintained with tp[i]

and the other maintained with d and take this as the list for

tp[i]

delete all fuzzy time intervals whose core length is less than

the value of minthd if tp[i] is empty then {Ck = Ck

- {si,tp[i]};

 break;

 }

 }

 }

 }

 }

 }

V IMPLEMENTATION

A Data structure used

Candidate generation, pruning and support count need an

efficient data structures in which all candidates are stored. In

general two data structures are used for this purpose namely

hash-tree and trie data structure. In our work we used

hash-tree data structure.

1 Hash tree data structures

The nicety about hash tree based implementation is that it

reduces the number comparisons by storing the candidates in

a hash tree. So, it makes the execution faster.

B Analysis of Results

For experimented conducted in the paper, we used a synthetic

dataset available at http://fimi.cs.helsinki.fi/testdata.html. As

the dataset does not have fuzzy time contents, we incorporate

the same. We consider the different sizes of transactions like

10,000, 20,000, 30,000, 40,000, 50,000, 100,000 execute the

algorithm. We keep the life time of dataset as one year i.e.

year 2012. The results obtained by method given in table1 and

figue1.

Transaction sizes Number frequent itemsets

10,000 1

20,000 1

30,000 2

40,000 3

50,000 4

100,000 9

Table1: frequent itemsets extracted by the method [2]

0

20,000

40,000

60,000

80,000

100,000

Figure1: frequent itemsets extracted by the method [2]

VI CONCLUSION

The algorithm [2] for finding frequent sets that are frequent in

certain fuzzy time periods from fuzzy temporal data, is given

in this paper. The algorithm dynamically extracts the frequent

sets along with their fuzzy time intervals where the sets are

frequent. These frequent sets are named as locally frequent

sets over fuzzy time interval. The technique used is similar to

the A priori algorithm. The efficacy of the algorithm is

established with the help of experiment conducted on a

synthetic data. The implementation is hash tree based

implementation. In future, we will go for other type of

implementation of the same algorithm.

References

http://fimi.cs.helsinki.fi/testdata.html

Mining Local Patterns from Fuzzy Temporal Data

 73 www.ijeas.org

[1] R. Agrawal, T. Imielinski and A. Swami; Mining association rules

between sets of items in large databases; Proceedings of the ACM SIGMOD

’93, Washington, USA (May 1993).

[2] F. A Mazharbhuiya, M. Shenify and Mohammed Husamuddin, Finding

Local and Periodic Association Rules from Fuzzy Temporal Data, The 2014

International Conference on Advances in Big Data Analytics July 21-24,

2014, Las Vegas, Nevada, USA.

[3] J. F. Roddick, M. Spillopoulou; A Biblography of Temporal, Spatial and

Spatio-Temporal Data Mining Research; ACM SIGKDD (June 1999).

[4] H. Manilla, H. Toivonen and I. Verkamo; Discovering frequent episodes

in sequences; KDD’95; AAAI, 210-215 (August 1995).

[5] J. M. Ale and G.H. Rossi; An approach to discovering temporal

association rules; Proceedings of the 2000 ACM symposium on Applied

Computing (March 2000).

[6] X. Chen and I. Petrounias; A framework for Temporal Data Mining;

Proceedings of the 9th International Conference on Databases and Expert

Systems Applications, DEXA ’98, Vienna, Austria. Springer-Verlag, Berlin;

Lecture Notes in Computer Science 1460 (1998), 796-805.

[7] X. Chen and I. Petrounias; Language support for Temporal Data Mining;

Proceedings of 2nd European Symposium on Principles of Data Mining and

Knowledge Discovery, PKDD ’98, Springer Verlag, Berlin (1998), 282-290.

[8] X. Chen, I. Petrounias and H. Healthfield; Discovering temporal

Association rules in temporal databases; Proceedings of IADT’98

(International Workshop on Issues and Applications of Database

Technology (1998), 312-319.

[9] J. M. Ale, and G. H. Rossi; An Approach to Discovering Temporal

Association Rules, In Proc. of 2000 ACM symposium on Applied Computing

(2000).

[10] A. K. Mahanta, F. A. Mazarbhuiya and H. K. Baruah; Finding Locally

and Periodically Frequent Sets and Periodic Association Rules, Proceeding

of 1st Int’l Conf on Pattern Recognition and Machine Intelligence

(PreMI’05),LNCS 3776 (2005), 576-582.

[11] F. A. Mazarbhuiya Yusuf Pervaiz (2015); An Efficient Method for

Generating Local Association Rules, International Journal of Applied

Information Systems (IJAIS), Foundation of Computer Science FCS, New

York, USA Volume 9 – No.2, June 2015.

[12] D. Dubois and H. Prade; Ranking fuzzy numbers in the setting of

possibility theory, Information Science 30(1983), 183-224.

Fokrul Alom Mazarbhuiya, College of Computer Science and IT, Albaha

University, Albaha, KSA

