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 

Abstract—   In this article we study an important concept in 

the theory of fibration and cofibration, namely approximate 

cofibration (A-cofibration), which is the dual of the concept of 

approximate fibration  [5, 10, 13], we give some examples. 

Following the  known problems concerning the concept of 

cofibration as; the composition, the product, the pullback, the 

relation with retracts and so on, [1, 4, 6, 7 and 13], we give some 

similar results concerning A-cofibration. 

Subject Classification: 55M20; 55R10 

 

Index Terms—Fibration, cofibration  

I. INTRODUCTION 

There are two forms for fibration and cofibration as "Lifting 

Problem and Extension Problem, the familiar “Homotopy 

Extension Property” is special case of Extension Problem, in 

[5] give the formula of approximate Homotopy Lifting 

Property (A-HLP), which are generalize the concept of 

fibration, and hence holds for the larger set of maps. Poul and 

Matthey established a general method to produce co-fibrant 

approximations in the model category. In this work we study 

the some properties of approximate cofibration 

(A-cofibration) concept. 

The word of mapping means continuous function, the word 

of space means topological space, and we replaced a long 

word (neighborhood) by abbreviation (nbd).  

II.  PRELIMINARIES AND DEFINITIONS 

Firstly, we will begin with the following terminology and 

notations [2, 9]; 

 

Definition(1-1):  Let   be mapping and   be an 

open cover of  B ,we say that f,g are -  closed iff 

given  then there exist  such that 

 .                                    

Definition(1-2): A map  have to approximate 

lowering homotopy property (A-LHP) w.r.t  iff given a map 

 and a homotopy  such that 

 and open cover  of , then there exist a 

homotopy   with and are  

-closed in  , for all .  Now let   be a given class of 

topological space , a map p is a cofibration  w.r.t  iff  has 

 (LHP) w.r.t each . 

Definition (1-3): 
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1- Let     be three topological spaces , let  

,             where  

,  are two fiber space and  such 

that   then  is a M-fiber space 

(Mixed fiber space), If  

,  then  is the usual fiber space. 

2- Let  be a M-fiber space let then 

 is the M-fiber over . 

Definition(1-4) : Two maps ƒ, : X →Y, are said to be 

U-close, Ucov(Y), provided that for each xX, one element 

of  U containing both ƒ (x) and  (x). 

A map ƒ: X→Y, is a near-homeomorphism if for any 

Ucov(Y), there exist a homeomorphism of X onto Y which 

is U-close to ƒ. 

Next, a maps ƒ, : X →Y, are U-homotopy, Ucov(Y), iff it 

is a homotopic by a homotopy H: X×I→Y, and H({x}×I) 

contained in one element of U. 

Definition (1-5): A proper map P: E→B, between locally 

compact ANR’s, has the approximate homotopy lifting 

property (A-HLP), w.r.t. a space X, provided that , given a 

Ucov(B), a maps : X→E, and H: X×I→B, such that P◦ = 

Ho, there exist G: X×I→E, such that Go= , and P◦ G is 

U-close to H; a map G is called U-lift of H. Maps with the 

A-HLP, w.r.t. all spaces is A-fibration [5]. 

Definition (1-6): A space X is said to be an ANR’s (absolute 

nbd retract), if for any space Y in which X can be embedded 

as a closed set there exist a nbd V of X in Y such that X is a 

retract of V, (i.e. there exist r: V→X, such that r ◦ j = 1X. 

 
Next, a map j: A→X is said to be have a homotopy extension 

property (HEP) w. r. t. a space Y, Provided that given a map 

ƒ: X→Y, a homotopy  F
\
 : A×I→Y, of ƒ

\
: A→Y such that ƒ◦ 

j═ F
\
o, Then there exist a homotopy F: X×I →Y,  Such that the 

shown diagram, commutes, See [1, 6, 7, 10]. 

Definition (1-7): A map j: A→X, is called a cofibration iff it 

has the (HEP) w.r.t. all spaces. Fibration and co-fibration, as 

well as various modifications of this notion, have some nice 

properties, which make them useful in studying both spaces 

and maps, There are several authors showed that some other 

classes of maps, e.g. cell-like maps, enjoy similar lifting 

properties [12]. This motivated Coram and Duvall [5], to 

define the notion of approximate fibrations. 

This is a map P: E→B, between say compact metric ANR’s 

(absolute nbd retracts), provided given εo, there exist δo 

such that for each space X, whenever h: X→E and H: 

X×I→B are maps with Ho is δ-close to P ◦ h there exists Ĥ: 

X×I→E such that Ĥ (x, o) =h (x) and d(H(x, t), P◦ Ĥ (x, 
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t))<ε, for each xX and tI "i.e. the given diagram 

commutes only up to ε". 

We begin with survey about some of concerning the concept is 

cofibration; 

Definition(1-8):  Let j: X→Y, be a map, define cyl(X) = I×X, 

and let i1: X→ cyl (X), be the map i1 (x)= (0, x),  Let 

( ) ( ) ,
X

cyl j I X Y    

 
There is an evident map :{( ) } ,

X
k I X Y I Y    

which map I×X by 1×j, and Y by i. And j is cofibration iff there a 

map : [( ) ])
X

r I Y I X Y   , where 1r k  , this means 

I×Y can be pushed down continuously onto subspace 
{( )}.I X  

In other hands, consider ƒo: X→Y, is given, and a subspace 

A X, one is also given homotopy ƒt: A→Y, of ƒo│A, which 

one would like to extend to homotopy ƒt: X→Y, of ƒo, if pair 

(X, A) is such that this extension problem can always be 

solved, one says that (X, A) has HEP. Thus (X, A) has HEP if 

all maps (X×0  A×I) →Y can be extended to map X×I→Y, 

in particular, the HEP for (X, A) implies that the identity map 

(X×0  A×I)→ (X×0  A×I) extends to X×I→ (X×0  A×I) 

so (X×0  A×I) is retract of X×I.  

Conversely there is a retraction X×I→ (X×0  A×I), then by 

composing with this retraction we can extend every map 

(X×0  A×I) →Y to a map X×I→Y. Thus the (HEP) for (X, 

A) is equivalent to (X×0  A×I) being retract of X×I. This 

relation criterion allows one to give simple examples of pairs 

(X, A) which do not have the (HEP), such as (I, (0,1)), since 

r: I×I→ [I×0  (0,1)×I] would  have the compact image. 

A slightly less trivial example, [13], is j: S→I, where S is the 

sequence {1/n}, together with its limit point o, it is not hard to 

show that there is no retraction.  

A quite useful result in the positive direction is: 

Proposition(1-9): [8]     If (Y, X) is a CW pair, then [(I×X) 

X Y], is retract of I×Y, hence [(I×X) X Y], is a 

cofibration. 

 Proposition(1-10): [7]   If (X, A) satisfies the (HEP), and A 

is contractible, then the quotient map q: X→X│A, is 

homotopy equivalence.  

Proposition(1-11): [8]   If (X, A) and (Y, A) are the (HEP), 

and ƒ: X→Y, is a homotopy equivalence with ƒ│A = 1. Then 

ƒ is a homotopy equivalence rel A.  

Finally we find it easier to avoid declaring upfront, which it is 

more convenient to define fibration or cofibration. 

 

An ordered pair of classes of map j: A→X, p: Y→B, has 

relative lifting property (RLP) [8, 11], if for any diagram, a 

filler ƒ: X→Y, exist. 

Definition(1-12) [11]: Given a class ∑ of maps; we call j: 

A→X, a ∑-cofibration if  (j, p) has the (RLP) for all p∑. 

And p: Y→B, is called a ∑-fibration if (j, p) has the (RLP) for 

all j∑. 

Definition(1-13):  A proper map j: X→Y, between locally 

compact ANR’s has the Approximate homotopy extension 

property (A-HEP) w.r.t. a space Z, provided that given 

Ucov (Z), a map ƒ: Y→Z, a homotopy ht: X→Z, such that ƒ 

◦ j ═ ho, there exist a homotopy ƒt: Y→Z, such that ƒo ═ ƒ, and 

ƒt ◦ j is U-close to ht, where ƒt is said to be U-extended of ht, 

 

A map with (A-HEP) w. r. t. all spaces are called 

A-cofibration. 

The above definition of course generalizes the usual 

cofibration (HEP), thus the A-cofibration (A-HEP) holds for 

a larger set of maps. As in [3, 5, 20], we called (Y, X) an 

A-cofibered pair. It is clearly that, a cofibration is an 

A-cofibration, also the near-homeomorphism is 

A-cofibration. 

Proposition(1-14):  Let  j1 : X→Y is cofibration and  j2 : 

Y→Z is A-cofibration, then j2  ◦ j1 is A-cofibration. 

Proof: Let ƒ
\ 
t: X→E and h: Z→E, be a given such that h◦ j2◦ j1 

═ ƒ
\ 

o, since j1 is cofibration, then there exist ƒ, ƒt: Y→E, such 

that ƒo ═ ƒ and ƒt ◦ j1 = ƒ
\
t, also j2 is A-cofibration, then there 

exist ht: Z→E, such that ht ◦ j2 is U-close to ƒt (Ucov (E)), 

and ho ═ h.  

 
Hence we have that ht ◦ (j2 ◦ j1) is U-close to ƒt

\
, then (j2 ◦ j1) is 

A-cofibration. 

Corollary(1-15):  If j: X→Y and i: Y→Z, be a maps such that 

j is cofibration and i ◦ j is A-cofibration, then i is 

A-cofibration. 

Proof: Given a maps ƒt: Y→E and h: Z→E, such that h ◦ i 

═ƒo, since (i ◦ j) is A-cofibration then for any a given  t: 

X→E, such that h ◦ i ◦ j ═  o, there exist ht: Z→E, such that ht  

◦ i ◦ j is U-close to  t "Ucov(E)", and  ho ═ h, and since j is 

cofibration then there exist ƒ , ƒt: Y→E, Such that ƒ ═ ƒo and 

ƒt ◦ j =  t . Hence we have ht ◦ i is U-close to ƒt, therefore i is 

A-cofibration. 
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III-Maine results of A-cofibration related with A-retract 

     Firstly we will give the following terminology and 

notation; also we will introduce some definitions that we 

need. 

If X is a subspace of a space Y such that the inclusion map 

XY, is an A-cofibration, then the pair (Y, X) is called an 

A-cofibered pair or is said to possess the (A-HEP). A 

condition for (Y, X) to be an A-cofibered pair is the existence 

of approximate retraction (A-retracts), rA: Y×I →{(Y×0)  

(X×I)}.  

Definition(2-1): The inclusion map j: X→Y is called an 

approximate retract (A-retract), iff rA ◦ j is U-close to 1X for 

any Ucov (X). If j ◦ rA is U-homotopic to 1Y  Ucov (Y), 

then j is an approximate deformation retracts (A-Dr). If j ◦ rA 

⋍U 1Y rel X, then j is an (A-SDr). 

 

The first two theorems provide a tool for constructing 

examples of maps, which is the A-cofibration.  

Theorem(2-2):  If  j: X→Y is an A-cofibration then j is a 

near-homeomorphism.  

Proof:  Conceder the following diagram;  

Let j: X→Y be an A-cofibration, Consider Z= [(Y×0) +ƒ 

(X×I)], is the quotient space of topological sum obtained by 

identifying (x, 0) with (j(x), 0).  

Let q be the quotient map q: [(Y×0) + (X×I)]→Z, that there is 

a map h: Z→Y×I, define as h ◦ q (y, 0) = (y, 0), yY and    

h◦ q (x, t)= (j(x), t).  

Let ƒ: Y→Z and F
\ 
: X×I→Z, such that ƒ(y) = q (y, 0) and F

\  

(x, t) = q (x, t), Since j is an A-cofibration, then for any Ucov 

(Z), there exist F: Y×I→Z, such that F(y, 0) = q (y, 0) and 

F(j(x), t) is U-close to q (x, t);  

Hence F ◦ h is U-close to 1Z. Then h is near-homeomorphism 

of Z to h(Z) = {(Y×0) +ƒ  (j(X)×I)}; Also q | X×I, is 

homeomorphism of X×I onto q (X×I), And consequently; H ◦ 

q | X×I, will be the near-homeomorphism of (X×I), to (h ◦ q 

(X×I) = j(X)×I). 

Theorem(2-3):  The pair (Y, X) is A-cofibration iff [(Y×0)  

(X×I)] is A-retract of Y×I. 

Proof:  Let ƒ: Y→Z, h: X→Z and H: X×I→Z, such that Ho = 

ƒ|X, Define F = {ƒ, H} ◦ rA: Y×I→Z, since for any Ucov (Z) 

rA ◦ j is U-close to 1(Y×0)  (X×I), this means that for any map 

from [(Y×0)  (X×I)] to Z, has an U-extention from Y×I to 

Z, it follows that F◦ (j×1I) is U-close to H, and F0 = ƒ, hence 

(Y, X) is an A-cofibered pair, 

 

III. CONVERSELY:  

If (Y, X) is an A-cofibered pair, let Z = {(Y×0)  (X×I)}, and 

{ƒ, H} be the identity map, then an U-extension of H starting 

at ƒ is A-retraction rA: Y×I → [(Y×0)  (X×I)]. 

The condition that X be closed is not very restrictive; also not all 

A-cofibration are closed however the most trivial example of a 

non-closed A-cofibration is the pair (Y, x) where Y is the 

two-point space {x,  y} with the trivial topology. 

If X is a subspace of a space Y, the mapping cylinder of the 

inclusion XY, may be identified with the subset {Y×0  

X×I} of Y×I, also if {Y×0  X×I}, is A-retract of Y×I, then 

the subspace topology inherited from Y×I is identical with the 

mapping cylinder topology, these topologies are also identical 

if X is closed, even if no A-retraction of Y×I to {Y×0  X×I} 

exist, hence they need not be identical for any pairs (Y, X). 

Corollary(2-4): If (Y, X) is an A-cofibered pair, so {(Y×0)  

(X×I)} is (A-SDr), of Y×I. 

Proof:   The U-homotopy between j ◦ rA and 1Y×I will be 

given as;     

HU (y, t, t
\ 
)= {(P1 ◦ rA (y, (1 - t

\ 
) t )}, {(1 - t

\  
)P2 ◦ rA (y, t) + t

\ 

t)}, which P1, P2 is the projection on X and I respectively.    

Lemma(2-5): The pair (Y, X) is an A-cofibered pair iff there 

exists a map φ: Y→I, such that X φ
-1 

(0), and U-homotopy 

HU: Y×I→Y, such that HU (y, 0) = y,  

HU (x, t) = x, and HU (y, t) X whenever t > φ (y). 

Proof: Suppos j is A-cofibration, there exists A-retract rA: 

Y×I → {(Y× 0)  (X×I)}, then φ and HU are define as 

follows; φ(y) = sup{t -P2 ◦ rA (y, t)} and HU (y, t) =  

P1◦ rA (y, t),  yY, tI. 

Conversely:     If φ and HU are exists, then rA is defined by 










)(),,,(H

)()0,,(H
),(

)()(

)(

)( ytytyty

ytty
ty

U

U

A



r  

 

 

Remark:  

If φ(y)<1, then HU (y, φ(y)) )1,(H )( )( yyU   X , 

thus replacing  HU (y, t) by ),,(H )( ytyU   We have 

the following result. 

Corollary(2-6):    If (Y, X) is A-cofibration, so is (Y, X ). 

The following lemma is generalized of (1-7), in [3], and we 

needed in the last section, that we well give the proof of it. 

Lemma(2-7): If subspace X of space Y is (A-Dr) of Y, then 

the inclusion map  j: X→Y is a U-homotopy equivalence. 
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Proof:  

Since X is (A-Dr) of Y, then there exist DA : YI→Y, such 

that d1 is A-retract of Y onto X (rA : Y→X), then rA ◦ j is the 

identety on X; then j is a homotopy equivalence. 

Lemma(2-8):  Suppose that P: E→B is A-fibration, with X is 

an (A-SDr) of Y, and that there exist a map φ: Y→I, such that 

X = φ
-1

(0), then a U-commutative diagram; 

 
My be filled in with a map ƒ: Y→E, such that P◦ ƒ is U-close 

to ƒ
\
, and ƒ ◦ j= ƒ

\\ 
, ƒ is unique up to a U-homotopy; 

(Ucov(B)). 

Proof:   By hypothesis, there exist (A-SDr), DA: j ◦ r ⋍U 1Y, 

rel X. Define  ĎA: Y×I→Y, by;    

                                          DA (y, t/φ(y)),   t<φ(y) 

           ĎA (y, t) = 

                                            DA (y, 1),         t ≥ φ(y). 

Since P is A-fibration, there exist U-homotopy, F
\ 

U: Y×I→E, 

such that P◦ F
\ 

U is U-close to ƒ
\ 
◦ ĎA, and F

\ 
U (y, 0)=ƒ

\\  
◦ r; we 

defined ƒ as ƒ(y)= F
\  

U (y, φ(y)). If ƒ: Y→E, is such that ƒ ◦ j = 

ƒ
\\
, then ƒ ⋍ U ƒ

 
◦ j ◦ r = ƒ

\\  
◦ r, rel X. 

Theorem(2-9): Suppose that P: E→B is A-fibration and  j: 

X→Y is A-cofibration, which X is closed, then any 

U-commutative diagram;  

 
May be filled in with a homotopy F

\
: Y×I→E, such that P ◦ F

\
 

is U-close to F, for any Ucov(B), and F
\
│{(Y×0)  (X×I)}= 

ƒ. 

Proof:   By corollary (4-3), [(Y×0)  (X×I)] is (A-SDr) of 

Y×I; That is DA: j◦ r ⋍U  

1Y×I, rel [(Y×0)  (X×I)]. And by lemma (5-3), there exist a 

function : Y→I, such that X= 
-1 

(0). Define φ: Y×I→I, by φ 

(y, t) = t (y), then [(Y×0)  (X×I)]= φ
-1

(0).  

And hence the theorem follows from (1-4). 

Definition(2-10):  Let j: X→Y and P: E→B are maps, a map 

pair ƒ=(ƒ
\\
, ƒ

\
): j→P, is a pair of maps ƒ

\\ 
: X→E and ƒ

\ 
: Y→B, 

such that the diagram is U-commutes, Ucov(B). 

 

And a map ġ: Y→E defines a map pair Q(ġ) =(ġ ◦ j, P ◦ ġ): j 

→P, ġ is called a U-lifting of the pair Q(ġ). 

Theorem(2-11): Let j:X→Y, be map with j(X) closed; then j is 

A-cofibration and U-homotopy equivalence, iff a map pair ƒ: 

j→P, with P: E→B is A-fibration, has U-lifting. 

Proof: Suppose that j is A-cofibration and since P be a given 

A-fibration then the first direction is just lemma (1-4). 

Conversely; since лo: Z
I 
→Z is A-fibration for any space Z; 

hence we consider the U-commutative diagram; 

 
Where F is U-lifting of its map pair. And so j: X→Y must be 

A-cofibration. Next, we may assume  j is an inclusion map, 

and since X→{p}, is A-fibration ({p} denotes a one-point 

space); then an A-retraction rA: Y→X is obtained as U-lifting 

of the map pair of the following diagram;  

 
The map P: Y

I 
→Y×Y, defined by P(w) =(w(0), w(1)) is also 

A-fibration[8], and hence the map pair of the following 

diagram; 

 
With ƒ

\\
 (x)(t)= x, ƒ

\
 (y) =(y, r (y)), has U-lifting ġ: Y→Y

I
 

associate to (A-SDr) of Y to X, and the complete of proof 

follows from (3-7). 

Corollary(2-12): In the above theorem if the equivalently 

holds, then the U-lifting of ƒ is unique up to a U-homotopy 

relative to j(X). 

 The proof of the following theorem is a similar fashion; 

 Theorem(2-13): For a map P: E→B, the map pair ƒ: j→P, 

with j is a closed A-cofibration, has U-lifting iff P is an 

A-fibration and U-homotopy equivalence. 

IV. INDUCED A-COFIBRATION: 

     Let j: X→Y, ƒ: X→E, be a maps and Y
\  
= E  jƒ  Y, be the 

cofibers sum of Y and E, which is the set of all equivalents 

classes of topological sum under the equivalence relation 

generated by [e~y   xX: e = ƒ(x), y = j(x)]. Let q: E+Y→ 

E jƒ Y is the identification map.  
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Define ƒ

\ 
: Y→Y

\ 
, j

\ 
: E→Y

\
, as the composition of q with the 

inclusions of E and Y into E+Y res., then j
\
 is called the 

pushout of j by ƒ.  

 Theorem(3-1):    The pushout of an A-cofibration is also 

A-cofibration. 

Proof: Let j: X→Y be an A-cofibration, and ƒ: X→E be a 

map. Let j
\ 
: E→Y

\ 
be the pushout of j by ƒ; so for any space Z, 

let : Y
\ 
→Z and H: E×I→Z, such that  ◦ j

\ 
= Ho, and we have 

that ◦ ƒ
\ 
: Y→Z and H(ƒ×1I): X×I→Z, such that ( ◦ ƒ

\
 ) ◦ j= 

Ho (ƒ×1I); since j is an A-cofibration, there exist F: Y×I→Z, 

such that  ◦ ƒ
\  

= Fo, and F(j×1I) is U-close to H(ƒ×1I), which 

Ucov (Z). Hence define F
\ 
: Y

\ 
×I→Z, by F

\  
(ƒ

\ 
(y), t)= F(y, 

t), and F
\  

(j
\  

(y), t)= H(e, t), 

then F
\  

(j
\  

×1I) is U-close to H, and F
\  

(ƒ
\  

(y), 0) = F(y,0)=  ◦ 

ƒ
\  
(y) = (q(y)), also F

\  
(j

\ 
(y), 0)= H(e, 0) =  ◦ j

\  
(e)= (q(e)), 

which (q: E+Y→E j ƒ Y). 

Theorem(3-2):  If j: X→Y and i: X
\ 

→Y
\
, are 

A-cofibration with X closed in Y, then [(Y, X) × (Y
\
, X

\ 
)] 

= (Y×Y
\
 , Y×X

\
  X×Y

\ 
) is also A-cofibration.  

Proof: Let φ: Y→I and HU: Y×I→Y, be as described in 

lemma (2-3),  

Let ψ and GU, be the corresponding maps for (Y
\
, X

\ 
); define 

η: Y×Y
\
 →I and FU : Y×Y

\
 ×I→Y×Y

\
, by FU (y,  y

\
, t) = [HU (y, 

t ^ ψ(y
\ 
)), GU(y

\ 
, t ^ φ(y))] and η(y, y

\
 )= [φ(y) ^ ψ(y

\
 )]. Then 

FU (y, y
\
, t) = (y, y

\ 
) and [Y×X

\
 X×Y

\ 
] η

-1
(0) if t=0 or (y, y

\ 

)[Y×X
\
  X×Y

\ 
]. Since X is closed then HU(y, φ(y))X 

whenever φ(y) < 1, Now suppose t  η(y, y
\
 ); Then either: 

φ(y) ≤ ψ(y
\
 ) and φ(y) < t, in which [t ^ ψ(y

\
 )] ≥ φ(y) and FU (y, 

y
\ 
, t)  X×Y

\
, 

or ψ(y
\ 
) <φ(y) and ψ(y

\ 
) <t, so that [t ^ φ(y)]ψ(y

\ 
) and FU (y, 

y
\
, t)Y×X

\
. This shows that FU (y, y

\ 
, t)  (Y×X

\   


 
X×Y

\ 
), 

whenever t  η (y, y
\ 
), and therefore from lemma (5-3), that 

(Y×Y
\ 
, Y×X

\  


 
X×Y

\ 
) is A-cofibration. 

Theorem(3-3):  Suppose that XY, that there exists a 

continuous function φ: Y→I, with Xφ
-1 

(0) and that there exist 

a point yoY \ X, such that φ(y0) ≠0; also if (Y
\
, X

\ 
) is a pair such 

that (Y×Y
\
, Y×X

\
 

 
X×Y

\
 ), is A-cofibration, then we have 

that (Y
\
, X

\ 
) it self is A-cofibration.  

Proof: Let η: Y×Y
\
 →I and FU: Y×Y

\
 ×I→Y×Y

\
, be as 

described in (3-2),  

We may obviously assume that φ(yo)=1. Define GU: Y
\
 ×I→Y

\
 

and ψ: Y
\
 →I, by: ψ(y

\
 )= max{η(yo, y

\ 
),1- inftI φ ◦ P1 ◦ FU (yo, 

y
\
, t)}and  

GU (y
\
, t) = [P2 ◦ FU (yo, y

\
, t)], which will be satisfy the 

condition of (2-5). 
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