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 

Abstract—Passive tracking techniques for non-cooperative 

space target have great significance in space surveillance 

systems. In this paper, we proposed a new filtering algorithm for 

passive tracking problem called iterated square-root cubature 

Kalman filter (ISCKF). By introducing a Newton-Gauss 

iterative method into the square-root cubature Kalman filter 

(SCKF), the proposed filtering algorithm has a better filtering 

performance in accuracy and stability. The simulation results 

demonstrate that the ISCKF outperforms the conventional 

filters when using bearings-only measurements. 

 

Index Terms—Non-cooperative space target, passive 

tracking, bearings-only, ISCKF. 

I. INTRODUCTION 

The surveillance of space objects is the important approach 

to obtain national space stratagem information [1-2]. 

Compared with the cooperative tracking mode, the 

satellite-to-satellite passive tracking system can obtain angles 

and frequencies by means of optical or radioed measurements 

[3-4]. The space-based bearings-only tracking and orbit 

determination technology for non-cooperative space target 

(NCST) is a critical technology for realizing and establishing 

our space-based surveillance system [5]. It can be used in 

identification of newly launched satellites, collision 

avoidance, orbit maneuver [6-7], etc. For example Low earth 

orbit (LEO) satellites usually need signals relayed to transmit 

signals to the ground station. If a high earth orbit (HEO) 

satellite is used to passively receive these signals, such as 

navigation and communication. The satellite tracking system 

can be realized through analysis and can estimate the 

parameters of these signals using filtering algorithms.  

Considering the nonlinear state and measurement system, a 

nonlinear filter is required for state estimation. Several 

nonlinear filters have been proposed to solve the nonlinear 

filtering problem, such as an extended Kalman filter (EKF), 

an unscented Kalman filter (UKF), a particle filter (PF) [8], 

etc. However, these filters have various defects, for example 

EKF performs badly in strong nonlinear filtering problem; PF 

has an enormous amount of computation in high dimension 

problem; UKF might have a non-positive covariance when the 

dimension of the system is more than three and it will lead to 

the unstable filtering performance of UKF. The newly 
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proposed cubature Kalman filter (CKF) [9] applies a 

third-degree spherical-radial cubature rule for numerically 

computing Gaussian weighted integrals. The spherical-radial 

cubature rule leads to an even number of equally-weighted 

cubature points. These cubature points are distributed 

uniformly on a sphere centered at the origin. In this 

dissertation, a modified CKF called iterated square-root 

cubature Kalman filter (ISCKF) using bearings-only 

measurements is proposed for non-cooperative space target 

tracking problem. The iterative algorithm [10-11] is 

introduced into CKF to increase the filtering accuracy and 

numerical stability. 

The rest of the paper is organized as follows. The tracking 

model for the satellite passive tracking is formulated in 

Section 2, including the dynamic model of the target satellite 

and bearings-only measurement model. Section 3 presents 

proposed ISCKF algorithm in details. In Section 4, the Monte 

Carlo simulation results of the proposed ISCKF are shown in 

a designed scenario. The conclusion is given in Section 5.  

II. TRACKING MODEL 

In this dissertation, a scenario is designed to build the 

tracking model. The geometrical relationship of the earth, the 

observation satellite and the target satellite are shown in Fig. 1, 

where O represents the observation satellite and T represents 

the target satellite, respectively. According to Fig. 1, the 

dynamic model and measurement model are given as blow.  

 

 
 

Fig. 1. The geometrical relationship of the earth, the 

observation platform and the tracking target 

A. Dynamic Model 

Considering the J2 perturbation effect of the earth gravity, 

the dynamic model of the target satellite can be built in earth 
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where  , ,
T

r x y z  and  , ,
T

x y zv v v v  are the position and 

velocity of the target satellite with respect to the earth center. 

e  is the earth gravity constant. 2J  is the coefficient of zonal 

harmonic terms. 
eR  is the radius of the earth. Equation (1) 

can be described as 

    X f X t w t                                (2) 

where   , , , , ,
T

x y zX t x y z v v v     is state vector of the 

target.   T[ , , , , , ]
x y zx y z v v vw t w w w w w w  is the system 

process noise which is assumed to be a Gaussian white noise. 

B. Measurement Model 

At time k, the azimuth angle   and pitching angle   

between the observation satellite and the target satellite can be 

obtained, which are defined as  

,
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where  , ,
T

O O O Or x y z  is the position of the observation 

platform with respect to the earth center.  

According to (3) and (4), the measurement model is 

expressed as 

 k

k k k

k

Z h X v




 
   
 

                              (5) 

where 
   1 2

,
T

kv v v 
 

 is the measurement noise which is 

assumed to be a Gaussian white noise.  

III. ITERATED SQUARE-ROOT CUBATURE KALMAN FILTER 

A. Square-root Cubature Kalman Filter 

Arasaratnam and Haykin present a new nonlinear filter for 

high-dimensional state estimation, which we have named the 

cubature Kalman filter (CKF) in [9]. They derived a 

third-degree spherical-radial cubature rule that provides a set 

of cubature points scaling linearly with the state-vector 

dimension. The CKF may therefore provide a systematic 

solution for high-dimensional nonlinear filtering problems. At 

the same time, a square-root version of CKF called 

square-root cubature Kalman filter (SCKF) is also given in 

[9]. Compared with some conventional filters, SCKF has 

higher filtering accuracy and numerical stability. The 

algorithm is given below.  

Time Update 

1) Evaluate the cubature points ( 1,2,...,i m ) 

, 1 1 1 1 1 1
ˆ

ii k k k k k k
X S x

     
                             (6) 

where 2 xm n  and when 1k  ,  

 00 0
S sqrt P                                 (7) 

2) Evaluate the propagated cubature points ( 1,2,...,i m ) 

 , 1 , 1 1i k k i k k
X f X

  
                              (8) 

where  f X  is given in (2). 

3) Estimate the predicted state 
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1

1
ˆ

m
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i
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4) Estimate the square-root factor of the predicted error 

covariance 
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, Q kk k k k
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where , 1Q kS   denotes a square-root factor of 1kQ   such that 
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Measurement Update 

1) Evaluate the cubature points ( 1,2,...,i m ) 

, 1 1 1
ˆ

ii k k k k k k
X S x

  
                              (12) 

2) Evaluate the propagated cubature points ( 1,2,...,i m ) 

 , 1 , 1i k k i k k
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                                (13) 

where  h X  is given in (5). 

3) Estimate the predicted measurement 
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4) Estimate the square-root of the innovation covariance 

matrix 
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5) Estimate the cross-covariance matrix 
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6) Estimate the Kalman gain 

, 1 , 1 , 1
T

zz k k zz k k zz k kP S S                             (19) 
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W P P R

 
                           (20) 



                                                                                

International Journal of Engineering and Applied Sciences (IJEAS) 

 ISSN: 2394-3661, Volume-2, Issue-11, November 2015   

                                                                                              75                                                                       www.ijeas.org 

 

7) Estimate the updated state 

 1 1
ˆ ˆ ˆ
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8) Estimate the square-root factor of the corresponding 

error covariance 
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B. Iterated Square-root Cubature Kalman Filter 

In this dissertation, a modified SCKF is proposed called 

iterated square-root cubature Kalman filter (ISCKF). The 

Newton-Gauss iterative algorithm [12-13] is introduced in 

SCKF to improve the filtering accuracy and stability. The 

ISCKF is given as blow.  

Time Update is the same as SCKF.  

Measurement Update 

1) Evaluate the cubature points ( 1,2,...,i m ) 
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2) Evaluate the propagated cubature points ( 1,2,...,i m ) 
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where  h X  is given in (5). 

3) Estimate the predicted measurement 
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4) Estimate the square-root of the innovation covariance 

matrix 
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5) Estimate the cross-covariance matrix 
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6) Estimate the Kalman gain 
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8) Estimate the square-root factor of the corresponding 

error covariance 
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9) Make    1
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k k k k
x x
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to Measurement Update Step 1 and end for j N .  

IV. SIMULATIONS 

To demonstrate the validity and reliability of the proposed 

algorithm, this section gives the simulation results. The 

normal orbit of the target satellite and the observation satellite 

are generated by Satellite Tool Kit (STK). The orbit elements 

of the two satellites are given in Table 1. 

Monte Carlo simulation results of the orbit determination 

performance for the EKF, SCKF and ISCKF are presented, 

and 100 runs are performed. Some initial parameters are 

defined as follows: Sampling time is 1s. The covariance of 

state process noise Q=diag([1
2
m, 1

2
m, 1

2
m, 0.01

2
m/s, 

0.01m/s, 0.01
2
m/s]). The covariance of the measurement 

noise R=diag([ 20 rad , 20 rad ]). The initial state error 

X =[10km, 10km, 10km, 5m/s, 5m/s, 5m/s]. 
14 3 23.986005 10 /e m s   , J2=0.00108263, Re=6371km. 

The iteration number N is 5.  

The trajectories of the satellites are shown in Fig. 2. Figs. 

3-5 show the position and velocity estimation error of EKF, 

SCKF and ISCKF, respectively. Table 2 shows the RMSE of 

the three algorithm and Table 3 shows the position and 

velocity estimation error when the filtering results are stable. 

 

 

 

Table 1 The orbit elements of the target satellite and the observation satellite 

 

Orbit element The observation satellite The target satellite 

Semimajor Axis(km) 8000 14000 

Eccentricity 0 0 

Inclination (deg) 5 50 

RAAN (deg) 0 0 

Argument of Perige (deg) 0 0 

Mean Anomaly (deg) 200 218 
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Fig. 2. The trajectories of the two satellites 
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Fig. 3. Estimation error of EKF 
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Fig. 4. Estimation error of SCKF 
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Fig. 5. Estimation error of ISCKF 
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Table 2 The RMSE of EKF, SCKF and ISCKF 

Algorithm Position RMSE (m) Velocity RMSE (m/s) 

EKF 1206.600 0.746 

SCKF 1157.508 0.947 

ISCKF 906.288 0.602 

 

Table 3 The estimation error of EKF, SCKF and ISCKF when filtering results are stable 

Algorithm Position error (m) Velocity error (m/s) 

EKF 269.351 0.189 

SCKF 166.796 0.136 

ISCKF 127.082 0.102 

 

Summarizing the above simulation results, the performance 

of ISCKF is better than the other two filters. From the figures, 

the stability and accuracy of ISCKF outperforms the other two 

filters. From the Table 2, the position RMSE of ISCKF 

decreases by 24.89% and 21.70% compared with SCKF and 

ISCKF, respectively, and the velocity RMSE of ISCKF 

decreases by 19.30% and 36.43% compared with SCKF and 

ISCKF, respectively. From the Table 3, the stable position 

error of ISCKF decreases by 52.82% and 23.81% compared 

with SCKF and ISCKF, respectively, and the stable velocity 

error of ISCKF decreases by 46.03% and 25.00% compared 

with SCKF and ISCKF, respectively.  

V. CONCLUSION 

In this paper, we proposed a new filtering algorithm for 

passive tracking problem called iterated square-root cubature 

Kalman filter (ISCKF). The Newton-Gauss iterative method 

is introduced into ISCKF to improve the conventional SCKF. 

The simulation results show that when using bearings-only 

measurements in tracking system, the proposed ISCKF 

outperforms the EKF and SCKF by comparison. It has a better 

filtering performance in accuracy and stability. The proposed 

ISCKF is an effective algorithm for passive target satellite 

tracking systems. 
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