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Abstract— This paper deals with the solutions of fuzzy 

fractional differential equations (FFDEs) under Caputo 

H-differentiability by variational iteration method. The 

variational iteration method has been applied in solving fuzzy 

fractional Riccati differential equations with fuzzy initial 

conditions. This method is illustrated by solving two examples. 

 

Index Terms— variational iteration method, fuzzy number, 

fuzzy fractional Riccati differential equation, fuzzy initial value 

problem 

I. INTRODUCTION 

  

Recently, the subject of fuzzy differential equations 

(FDEs) has been quickly increasing. Initially, the term of the 

fuzzy derivative was defined by Chang and Zadeh [1]; it was 

pursued by Dubois and Prade [2], who made use of the 

extension principle in their study. Park, Kwan and Jeong [3] 

have discussed other methods to see if it satisfies the 

differential equation with fuzzy initial conditions; and the 

second method was the reverse of the first method, in that 

they initially solved the fuzzy initial value problem and they 

checked to see if it defined a fuzzy function. Fuzzy fractional 

differential equations play progressively significant roles in 

the modeling of science and engineering problems such as 

civil engineering, population models and in modeling 

hydraulic. It has been demonstrated that, convenient results 

than analytical models with integer derivatives. In this paper, 

the approximate solution of fuzzy fractional order differential 

equation will be discussed, in which fractional differential 

equation could be regarded as an essential type of differential 

equations, where the different integration that appears in the 

equation is of non-integer order. Here we consider the 

following nonlinear fuzzy fractional Riccati differential 

equation: 
  

 
  
  ( )   ( )   ( )   ( )                     ,  

                                                 (1.1) 

with fuzzy initial conditions: 

 

 ( )( )   ̃                 , 

where  ( ) ,  ( )  and  ( )  are given functions,  ̃    

             ,  are arbitrary fuzzy number and   is 

an order of the fractional derivative.  
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The most commonly utilized definitions are the fuzzy 

Riemann-Liouville and Caputo definitions. Each definition 

makes use of fuzzy Riemann-Liouville fractional derivatives 

and integration of integer order.  

The distinction between the two definitions is in the order of 

evaluation order. Fuzzy Riemann-Liouville fractional 

integration of order   is defined as 

   
  ( )  

 

 ( )
∫ (   )    ( )

 

 
             ,                                

(1.2) 

The following two equations define fuzzy Riemann-Liouville 

and fuzzy Caputo fractional derivative of order  , 

respectively: 

  
  

  
  ( )  

  

   
(  

    ( ))           and                        

(1.3)                                  

  
 

  
  ( )    

   (
  

   
 ( )),                 and                         

(1.4) 

We would rather use the fuzzy Caputo fractional derivative. 

Because it permits traditional initial and boundary conditions 

to be included in the formulation of the problem, For more 

details on the geometric and physical interpretation for fuzzy 

fractional derivatives, see [4, 5, 6, 7]. 

II. PRELIMINARIES AND NOTATIONS 

Definition 2.1. A fuzzy number is a fuzzy set       
[   ] which satisfies 

1)   is upper semicontinuous. 

2)  ( )    outside some interval [   ]. 
3) There are real numbers  ,  :          for which 

i.  ( ) is monotonic increasing on [   ]. 
ii.  ( ) is monotonic increasing on [   ]. 
iii.  ( )   ,      . 

The set of all fuzzy numbers (as given by Definition 2.1) is 

denoted by   . An alternative definition or parametric form 

of a fuzzy number which yields the same    is given by 

Kaleva [8]. 

Definition 2.2. A fuzzy number   in parametric form is a pair 

(   ) of functions  ( ),  ( ),      , which satisfy the 

following requirements [9]: 

1)  ( )  is a bounded non-decreasing left continuous 

function in (   ] and right continuous at  , 

2)  ( )  is a bounded non-decreasing left continuous 

function in (   ] and right continuous at  , 

3)  ( )   ( ),      . 

 

Definition 2.3. A fuzzy number   is called a triangular fuzzy 

number (TFN) if its member membership function   is given 

by 
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  ( )  

{
 
 

 
 

                         
   

   
                

   

   
                 

                       

, 

The TFN is denoted by the triplet   (     ). Further the 

 -cut of the TFN   (     )  is the closed interval 

   [   ]  [(   )     (   )   ]   (   ] , 

[10]. 

Definition 2.4. Fractional derivative of compounded 

functions [11] is defined as 

     (   )            . 

Definition 2.5. The integral with respect to (  )  [11] is 

defined as the solution of the fractional differential equation 

    ( )(  )       ( )                   (   ).                             

 

Lemma 2.1. Let  ( ) denote a continuous function [11] then 

the solution of the Eq. (2.1) is defined as 

  ∫  ( )(  ) 
 

 

  ∫ (   )    ( )
 

 

             

(   )                                                      

For example  ( )     in Eq. (2.2) we can write, 

∫   (  )  

 
 

 (   ) (   )

 (     )
                      (   )                                  

 

III. PROPERTIES OF MODIFIED FUZZY RIEMANN-LIOUVILLE 

DERIVATIVE 

 

Comparing with the classical fuzzy Caputo derivative, the 

definition of modified fuzzy Riemann-Liouville derivative is 

not required to satisfy higher integer-order derivative than  . 

Also,     derivative of a constant is zero. Now we show 

some properties of the fractional derivative. Suppose that 

     ,    ( )  denote a continuous (but not 

necessarily differentiable) function in the interval [   ] . 

Through the fuzzy fractional Riemann-Liouville integral 

[(   
  )( )]

 
 *(   

  ) (   ) (   
  )(   )+       ,                          

(3.1) 

where 

(   
  ) (   )  

 

 ( )
∫

 (   )  

(   )   

 

 
                 ,                            

(3.2) 

and                                 

 (   
  )(   )  

 

 ( )
∫

 (   )  

(   )   

 

 
                 ,                            

(3.3)    

the modified fuzzy Riemann-Liouville derivative is defined 

as [6] 

[   
  

  
  ( )]

 
 *   

  
  
  (   )   

  
  
  (   )+          ,                      

(3.4) 

where 

  
  

  
  (   )  

 

 (   )

 

  
∫

 (   )  

(   ) 

 

 

          (   ) 

and 

  
  

  
  (   )  

 

 (   )

 

  
∫

 (   )  

(   ) 

 

 
            (3.6) 

In the next sections, we will use the integration with respect 

to (  )  (Lemma 2.1), 

[   
  ( )]

 
 

 

 ( )
∫ (   )   [ ( )]   

 

 

 

 
 

 (   )
∫ [ ( )] (  ) 

 

 

        

     (3.7) 

IV. ANALYSIS OF THE VARIATIONAL ITERATION METHOD 

 

We consider the fuzzy fractional Riccati differential equation 

(1.1), According to the variational iteration method [12], we 

construct a correction functional for (1.1) which reads 

{
          

  ( ) [
    

     ( )   ( )    ( )  
 ]

 
   

  
 

   
  ( ) *

    

     ( )   ( ) 
 

  ( ) 
 

 
+
,                          

(4.1) 

To identify the multiplier, we approximately write (4.1) in the 

form 

{
  
 

  
         

 

 ( )
∫ (   )    ( )

 

 
  

(
    

     ( )   ( )    ( )  
 )

 
   

  
 

 
 

 ( )
∫ (   )    ( )

 

 
  

(
    

     ( )   ( ) 
 

  ( ) 
 

 
)

,        (4.2) 

 

Using Eq. (2.2), we obtain a new correction functional 

 

{
 
 

 
         

 

 (   )
∫  ( ) [

    

     ( )   ( )    ( )  
 ]

 

 
(  ) 

 
   

  
 

 
 

 (   )
∫  ( ) *

    

   
  ( )   ( ) 

 
  ( ) 

 

 
+

 

 
(  ) 

,             (4.3) 

where   and   are the so-called general Lagrange multiplier 

[13]. It is obvious that the successive approximation    and 

 
 
,     can be established by determining   and  , general 

Lagrange multipliers, which can be identified optimally via 

the variational theory [14,15]. The function  ̃  is a limited 

variation, which means   ̃   . Thus, we first write the 

Lagrange multiplier   and   that will be identified by way of 

integration by parts. The successive approximations 

    (   )    of the solution  (   ) and  
   

(   )    of 

the solution  (   ) will be easily obtained upon using the 

Lagrange multipliers gotten by using any selective functions 

  (   ) and  
 
(   ). Hereby, the fuzzy solutions are written 

by using the limits: 

{
 (   )          (   )

 (   )         
 
(   )

                                     (4.4) 

V. APPLICATIONS AND NUMERICAL RESULTS 

 

In this section, to show the efficiency of this method, we 

present two illustrative examples.  
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Example 1. Consider the following fuzzy fractional Riccati 

differential equation: 

   
  ( ) 

    ( )    ( )                     ,                                              

(5.1) 

subject to the fuzzy initial condition 

  ( )   ̃  [       ]. 
The exact solution of (5.1) is 

  ( )    √     (√   (
 

 
)    (

√   

√   
)), when    . 

Taylor expansion of  ( ) around     gives 

 ( )       
  

 
 

  

 
 

   

  
 

   

  
 

    

   
 

    

   
  . 

Now, the correction functional for (5.1) form as below 

{
  
 

  
     (   )    (   )  

 

 (   )

∫  ( ) (
    (   )

       (   )    
 (   )   )

 

 
(  ) 

 
   

(   )   
 
(   )  

 

 (   )

∫  ( ) (
    (   )

      
 
(   )   

 

 
(   )   )

 

 
(  ) 

,   

(5.2)                      

where 
  [  ( )] 

       
 [  ( )]  

 . This yields the stationary 

conditions     ( )   ,    ( )    and  
 
( )   ,   

 ( )    which gives 

 ( )   ( )    , 

Using this Lagrangian multiplier in (5.2), the iteration 

formula is shaped below 

{
    (   )    (   )  

 

 (   )
∫ (

    (   )

       (   )    
 (   )   )

 

 
(  ) 

 
   

(   )   
 
(   )  

 

 (   )
∫ (

    (   )

   
   

 
(   )   

 

 (   )   )
 

 
(  ) 

     

 (5.3)                       

Beginning with 

  (   )  (   )
  

 (   )
,        

 
 
(   )  (   )

  

 (   )
, 

by the iteration formulations (5.3), we get directly the other 

components as 

  (   )  
  

 (   )
  (   )

 

 (    )
    (  

 )  (    )

( (   ))
 
 (    )

   , 

 
 
(   )  

  

 (   )
  (   ) 

 

 (    )
    (   )  (    )

( (   ))
 
 (    )

   , 

  (   )

 
  

 (   )
  

 

 (    )
     (   )

 

 (    )
   

 
 (    )

( (   ))
 
 (    )

   

  (   ) 
 (    )

( (   ))
 
 (    )

   

  (   )
 (    )

 (   ) (    ) (    )
   

  (   ) 
 (    ) (    )

( (   ))
 
 (    ) (    )

     

 (   ) 
 (    )

( (   ))
 
 (    )

   

  (   ) 
 (    )

( (   ))
 
 (    ) (    )

     

(   ) 
( (    ))

 
 (    )

( (   ))
 
( (    ))

 
 (    )

     

 
 
(   )  

  

 (   )
  

 

 (    )
   

  (   )
 

 (    )
   

 
 (    )

( (   ))
 
 (    )

   

  (   ) 
 (    )

( (   ))
 
 (    )

   

  ( 

  )
 (    )

 (   ) (    ) (    )
    

  (   ) 
 (    ) (    )

( (   ))
 
 (    ) (    )

     

 (   ) 
 (    )

( (   ))
 
 (    )

   

  (   ) 
 (    )

( (   ))
 
 (    ) (    )

     

(   ) 
( (    ))

 
 (    )

( (   ))
 
( (    ))

 
 (    )

     

  
and so on. The nth approximate fuzzy solutions of the method 

approximates to the exact series solution [4]. So, we 

approximate fuzzy solutions 

 

 (   )          (   ) and  (   )         
 
(   ). 

 

In Figure 2, approximate fuzzy solution 

 

 [ ( )]  *  (   )   
(   )+ using VIM is plotted for 

       

 

 

 
Figure 1. Exact solution. 
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Figure 2. The approximate fuzzy solutions to the VIM 

 

Example 2. (Fuzzy fractional nuclear decay equation). 

Consider the following fuzzy fractional Riccati differential 

equation 

{
(    

 
 

  )( )    ( )                

 ( )   ̃  [                 ]           
      (5.4) 

                                             

where,  ( ) is the count of total radionuclides existing in any 

radioactive. The exact solution of (5.4) is 

 

  ( )  ∑         (   ) ( )( )   
   . 

 

Firstly we write the iteration form as below, 

{
 
 
 

 
 
     (   )    (   )  

 

 (   )

∫  ( ) (
    (   )

      (   ))
 

 
(  ) 

 
   

(   )   
 
(   )  

 

 (   )

∫  ( ) (
    (   )

      
 
(   ))

 

 
(  ) 

, 

 

where 
  [  ( )] 

       
 [  ( )]  

  and  ( ) is unknown but it 

can be determined.   

     (   )     (   )  
 

 (   )
∫  ( ) (

    (   )

    
 

 

  (   )) (  )  

(   |   )   (   )  
 

 (   )
∫ (  

( )
  )

 

 
   (   )(  ) , 

  
   

(   )    
 
(   )  

 

 (   )
∫  ( ) (

    (   )

    
 

 

 
 
(   )) (  )  

(   |   )  
 
(   )  

 

 (   )
∫ (  

( )
  )

 

 
  

 
(   )(  ) . 

 

Note that    (   )    and   
 
(   )   .  ( )  must 

satisfy 

   |    and    
( )

    ,  

 

As a result,  ( ) can be identified explicitly 

 ( )       ((   ) )                   (5.5)                                                  

where     ((   ) )  is defined by the classical 

Mittag-Leffler function 

    ((   ) )      ( )  ∑
((   ) ) 

 (    )
 
   . 

Thus, the iteration formulae for Eq. (5.4) can be written as 

{
 
 
 

 
 
     (   )    (   )  

 

 (   )

∫     ((   ) ) (
    (   )

      (   ))
 

 
(  ) 

 
   

(   )   
 
(   )  

 

 (   )

∫     ((   ) ) (
    (   )

     
 
(   ))

 

 
(  ) 

. 

 

On the other hand, if   (   ) and  
 
(   )  is handled as a 

limited variation in Eq. (5.5), similarly, the Lagrange 

multiplier can be identified by 

   |    and   
( )

  .  

As a result, we can derive the generalized multiplier 

 ( )    , 

 we can get the iteration form  

{
 
 

 
     (   )    (   )  

 

 (   )
∫ (

    (   )

      (   ))
 

 
(  ) 

 
   

(   )   
 
(   )  

 

 (   )
∫ (

    
(   )

   
  

 
(   ))

 

 
(  ) 

. 

Start from 

  (   )  (        ),  

 
 
(   )  (        ). 

We can obtain 

  (   )  (        ) (  
  

 (   )
), 

 
 
(   )  (        ) (  

  

 (   )
), 

  (   )  (        ) (  
  

 (   )
 

   

 (    )
), 

 
 
(   )  (        ) (  

  

 (   )
 

   

 (    )
), 

  
and so on. The nth approximate fuzzy solution of the method 

approximates to the exact series solution. So, we approximate 

the fuzzy solutions  

 

 (   )          (   ) and  (   )         
 
(   ). 

In Figure 4, approximate fuzzy solution 

 [ ( )]  *   (   )    
(   )+ using VIM is plotted for 

      

 

 
Figure 3. Exact solution 
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Figure 4. The approximate fuzzy solutions to the VIM 

 

 

 

 
 

VI. CONCLUSION 

 

In this paper, the variational iteration method was 

investigated to solve the fractional order fuzzy Riccati 

differential equations. The solution we have achieved by the 

variational iteration method is an infinite power series, which, 

can be expressed in an implicit form with appropriate fuzzy 

initial condition, i.e. the approximate fuzzy solution. The 

final numerical findings presented in tables above indicate 

that the variational iteration method is an efficient instrument 

to solving fractional order fuzzy Riccati differential 

equations. 
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Table 1. The numerical fuzzy solution to the VIM (  (   )    (   )) 

   (   ) 

            

  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4836 

0.1 0.4408 0.4514 0.4615 0.4712 0.4804 0.4891 0.4974 0.5053 0.5128 0.5198 0.5265 0.6652 

0.2 0.5687 0.6044 0.6375 0.6679 0.6959 0.7215 0.745 0.7663 0.7857 0.8032 0.8190 0.8591 

0.3 0.5704 0.6490 0.7199 0.7835 0.8402 0.8905 0.9348 0.9736 1.0072 1.0361 1.0607 1.0586 

0.4 0.4529 0.5971 0.7243 0.836 0.9332 1.017 1.0885 1.1488 1.1987 1.2393 1.2713 1.2558 

0.5 0.2082 0.4455 0.6519 0.8298 0.9814 1.109 1.2148 1.3009 1.3691 1.4213 1.4593 1.4432 

0.6 -0.1770 0.1864 0.4988 0.7641 0.9864 1.1698 1.3181 1.4348 1.5234 1.5871 1.6289 1.6148 

0.7 -0.7200 -0.191 0.2589 0.6362 0.9480 1.2007 1.4006 1.5535 1.6647 1.7397 1.7831 1.7667 

0.8 -1.4370 -0.698 -0.075 0.4419 0.8644 1.2018 1.4636 1.6587 1.7953 1.8812 1.9239 1.8970 

0.9 -2.3480 -1.348 -0.512 0.1765 0.7333 1.1726 1.5077 1.7517 1.9165 2.0133 2.0527 2.0061 

1.0 -3.4710 -2.155 -1.061 -0.166 0.5520 1.1119 1.5331 1.8334 2.0295 2.1371 2.1706 2.0953 

http://www.sciencedirect.com/science/article/pii/S0165011482800018
http://www.sciencedirect.com/science/article/pii/S0165011482800018
http://www.sciencedirect.com/science/article/pii/0165011487900297
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Table 2. The numerical fuzzy solution to the VIM (  (   )   
 
(   )) 

   (   ) 
            

  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4836 

0.1 0.5754 0.5718 0.5680 0.5639 0.5595 0.5548 0.5498 0.5445 0.5389 0.5329 0.5265 0.6652 

0.2 0.9009 0.8976 0.8935 0.8883 0.8822 0.8749 0.8665 0.8567 0.8456 0.8331 0.8190 0.8591 

0.3 1.1338 1.1366 1.1377 1.1370 1.1342 1.1292 1.1217 1.1113 1.0979 1.0811 1.0607 1.0586 

0.4 1.2870 1.3013 1.3134 1.3229 1.3293 1.3322 1.3309 1.3248 1.3134 1.2958 1.2713 1.2558 

0.5 1.3664 1.3972 1.4257 1.4511 1.4726 1.4892 1.4999 1.5035 1.4989 1.4846 1.4593 1.4432 

0.6 1.3762 1.4280 1.4777 1.5244 1.5666 1.6029 1.6315 1.6506 1.6581 1.6517 1.6289 1.6148 

0.7 1.3203 1.3965 1.4718 1.5447 1.6131 1.6750 1.7276 1.7681 1.7933 1.7996 1.7831 1.7667 

0.8 1.2020 1.3055 1.4101 1.5136 1.6134 1.7065 1.7892 1.8572 1.9059 1.9300 1.9239 1.8970 

0.9 1.0246 1.1575 1.2944 1.4325 1.5686 1.6984 1.8171 1.9187 1.9969 2.0443 2.0527 2.0061 

1.0 0.7911 0.9549 1.1265 1.3028 1.4796 1.6514 1.8119 1.9534 2.0671 2.1432 2.1706 2.0953 

Table 3. The numerical fuzzy solution to the VIM (  (   )     (   )) 

 
 (   ) 

              

  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.0 0.5000 0.5500 0.6000 0.6500 0.7000 0.7500 0.8000 0.8500 0.9000 0.9500 1.0000 1.0000 

0.1 0.3618 0.398 0.4341 0.4703 0.5065 0.5427 0.5789 0.615 0.6512 0.6874 0.7236 0.7236 

0.2 0.3219 0.3541 0.3863 0.4185 0.4507 0.4828 0.5150 0.5472 0.5794 0.6116 0.6438 0.6438 

0.3 0.296 0.3256 0.3552 0.3848 0.4144 0.4440 0.4736 0.5032 0.5328 0.5624 0.5920 0.5920 

0.4 0.2768 0.3045 0.3322 0.3599 0.3875 0.4152 0.4429 0.4706 0.4983 0.5259 0.5536 0.5536 

0.5 0.2616 0.2878 0.3139 0.3401 0.3663 0.3924 0.4186 0.4447 0.4709 0.4971 0.5232 0.5232 

0.6 0.2491 0.2740 0.2989 0.3238 0.3487 0.3736 0.3985 0.4235 0.4484 0.4733 0.4982 0.4980 

0.7 0.2385 0.2624 0.2862 0.3101 0.3339 0.3578 0.3817 0.4055 0.4294 0.4532 0.4771 0.4767 

0.8 0.2295 0.2524 0.2754 0.2983 0.3213 0.3442 0.3672 0.3901 0.4131 0.436 0.4590 0.4582 

0.9 0.2217 0.2439 0.2661 0.2882 0.3104 0.3326 0.3547 0.3769 0.3991 0.4213 0.4434 0.4420 

1.0 0.2150 0.2365 0.2580 0.2795 0.3010 0.3225 0.3440 0.3655 0.3870 0.4086 0.4301 0.4276 

 

Table 4. The numerical fuzzy solution to the VIM (  (   )   
  

(   )) 

 
 (   ) 

              

     
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.0 1.5000 1.4500 1.4000 1.3500 1.3000 1.2500 1.2000 1.1500 1.1000 1.0500 1.0000 1.0000 

0.1 1.0854 1.0492 1.0130 0.9768 0.9407 0.9045 0.8683 0.8321 0.7959 0.7598 0.7236 0.7236 

0.2 0.9657 0.9335 0.9013 0.8691 0.8369 0.8047 0.7725 0.7404 0.7082 0.676 0.6438 0.6438 

0.3 0.8880 0.8584 0.8288 0.7992 0.7696 0.7400 0.7104 0.6808 0.6512 0.6216 0.5920 0.5920 

0.4 0.8304 0.8028 0.7751 0.7474 0.7197 0.6920 0.6643 0.6367 0.6090 0.5813 0.5536 0.5536 

0.5 0.7848 0.7587 0.7325 0.7063 0.6802 0.6540 0.6279 0.6017 0.5755 0.5494 0.5232 0.5232 

0.6 0.7473 0.7224 0.6975 0.6725 0.6476 0.6227 0.5978 0.5729 0.5480 0.5231 0.4982 0.4980 

0.7 0.7156 0.6917 0.6679 0.644 0.6202 0.5963 0.5725 0.5486 0.5248 0.5009 0.4771 0.4767 

0.8 0.6885 0.6655 0.6426 0.6196 0.5967 0.5737 0.5508 0.5278 0.5049 0.4819 0.4590 0.4582 

0.9 0.6651 0.6430 0.6208 0.5986 0.5765 0.5543 0.5321 0.5099 0.4878 0.4656 0.4434 0.4420 

1.0 0.6451 0.6236 0.6021 0.5806 0.5591 0.5376 0.5161 0.4946 0.4731 0.4516 0.4301 0.4276 

 


