How does the intervertebral discs parameter variation affect the biomechanical behavior of spinal structures? Results of a detailed study of multibody simulation sensitivity

Sabine Bauer, Dietrich Paulus

Abstract- At the present there is a variety of ways to investigate the biomechanical properties of human structures. In addition to experimenting and imaging, computer modeling is an established method to calculate the kinematics and kinetics. While many different lumbar spine models have already been created, the sensitivity of the model to input parameters has still not been sufficiently studied. To come up with a realistic modeling, the effects and the interaction of various input parameters must be understood in advance. Particularly for the development of patient-specific models knowledge about the influence of the input parameter constitutes the basis of solid modeling. In the respective literature, especially the performance of the intervertebral disc is described as central to any spine model and thus requires a detailed investigation at first.

A multibody simulation model of the lumbar spine that takes the biomechanical properties of the spinal structures such as the intervertebral discs, the ligaments, and the facet joints into account has been created. The model has been validated by comparing the results with results from appropriate literature. The aim of this study is to investigate the impact of the modified disc stiffness onto the spinal structures. For this purpose, stiffness values are used as input parameters that have been published in the literature. To investigate the relationship between the different interspinous structures when changing input parameters the most natural load case, the upright state, is simulated.

The disc characteristic of the highest and lowest functional spinal unit shows that the load situation under different stiffness is almost identical. Slight changes are recorded in the central functional spinal units, which are also reflected in the intersegmental rotations. The biggest impact is recorded in the facet joints. The load structure of facets changes in all five functional spinal units. Some are nearly twice as heavily loaded.

The study proves that the use of different input parameters does not necessarily lead to major change in the biomechanical behavior of the structures in which the input parameter has been changed, but may have a greater impact on other modeled structures.

Index Terms— multibody simulation, lumbar spine, intervertebral disc, influence of parameters.

I. INTRODUCTION

There are different approaches to identify spinal disorders: For example, medical imaging, experimental investigations or computer modeling. The most common medical imaging procedures are MRI and CT- imaging [1], [2], [3], [4]. With the help of these imaging techniques damages of soft tissue can be diagnosed and the bone constitution can be assessed. Another approach to identify spinal disorders is experimental investigation. In in vivo studies a pressure sensor is inserted in a selected disc of a living person, so that the intradiscal pressure can be measured [5], [6], [7], [8]. In in vitro studies the kinematic quantities influenced by external forces or torques of autopsy can be determined [9], [10], [11]. A further method to identify spinal disorders is computer modeling, where to multibody simulation modeling and finite element modeling are to be distinguished. In finite element modeling each body is divided into smaller sub-units. For each element the node displacement and the related change in tension is calculated by taking the specific material laws into account [12]. However, one disadvantage of finite element modeling is the required computational time of the system, which is relatively long. According to Berkley [13] the models' accuracy increases with the number of finite elements that are used to describe the geometry. But each additional element also means an additional computational time. Chomphan [14] and Zhang [15] confirm that solving large numbers of FE equations leads to an enormously time-consuming calculation. The accuracy of the system and the expected computing time must therefore be carefully matched. A much faster method is the multibody simulation (MBS). In MBS modeling the bony structures of the vertebral bodies are assumed to be rigid and thus not deformable. The individual bodies are linked through massless joints or force elements [16]. The acting external force activates the kinematics of the model, which is defined as a system of coupled differential equations. By numerical integration the kinematic variables, the transmitted forces and the torques are calculated.

One difficulty in modeling is that the input parameters, which are partly based on data from already published literature, may differ from one to the next publication. For example, the values for the stiffness of the intervertebral discs are dissimilar in the publications of Lavaste [17], Markolf [18], Panjabi [19], and Tencer [20].

Due to the short computation time of MBS-modeling, it is possible to analyze the impact of different input parameters on a broad spectrum of possible variations. This study investigates in which way the results depend on the input data that are used to define the material properties of the model. The effect of variations in the intervertebral disc material

Sabine Bauer, Institute for Medical Engineering and Information Processing, University of Koblenz-Landau, Campus Koblenz, Koblenz, Germany, 049-261/278-1784.

Dietrich Paulus, Institute for Medical Engineering and Information Processing, University of Koblenz-Landau, Campus Koblenz, Koblenz, Germany, 049-261/278-2788.

How does the intervertebral discs parameter variation affect the biomechanical behavior of spinal structures? Results of a detailed study of multibody simulation sensitivity

properties and the consequences on the interspinal structures are analyzed.

II. MBS LUMBAR SPINE MODEL

A. Surface generation and alignment of the lumbar spine model

The vertebral surfaces of this model is based on CT-images of artificial vertebrae, whose size correspond to the average size of the vertebrae of Europeans. Plugins are developed to segment and to visualize the data sets (Fig. 1) and make them available for simulation [21], [22].

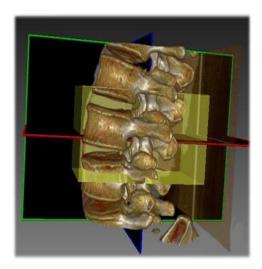


Fig. 1 Example for a segmented and visualized data set using self-developed plugins

The vertebral bodies are arranged so that the spinal alignment fulfills the characteristics of a well-balanced spine according to Roussouley [23]. All the conditions of a well-balanced spine are fulfilled in this model: the sacral slope is between 35° und 45° , the apex of the lumbar lordosis is located at the center of the L4 vertebral body, the lower lordosis is more prominent, the inflexion point is located at the thoracolumbar junction, an average of four vertebral bodies constitutes the arc of lordosis, and the average global lordosis angle is 61° .

B. Biomechanical properties of the spinal structures

The lumbar MBS model (Fig. 2) consists of vertebrae L1-L5, the os sacrum, and the os ilium. The rigid bodies are connected by joints that are located in the middle between two vertebral bodies. At this point the forces and torques can be transmitted. The disc force is calculated by an equation, which is composed of a stiffness and a damping term (1). The stiffness term is composed of the stiffness c, the cross-sectional area CSA and the deformation of the intervertebral discs. The cross-sectional area CSA is included in the stiffness term to take the effects of the different disc sizes onto the disc properties into account. The damping term depends on the damping and the velocity Δr '.

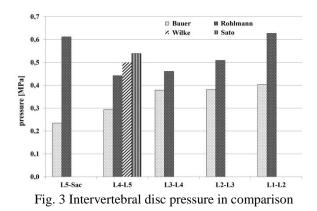
$$\mathbf{F} = \mathbf{c} \cdot \mathbf{CSA} \cdot \Delta \mathbf{r} + \mathbf{d} \cdot \Delta \mathbf{r}^{\prime} \qquad (1)$$

The transmission of torques is based on experimentally determined curves for all three motion axes [24].

Fig. 2 MBS-model of the lumbar spine

Furthermore, the ligaments lig. longitudinale posterius (PLL), lig. longitudinale anterius (ALL), lig. flavum (LF) and lig. interspinale (ISL) as well as the lig. supraspinale (SSL) and the lig. intertransversarium (ITL) and ligg. iliolumbale are implemented in the model. A ligament is spanned between to marker points. As a ligament can only be defined between two points in the simulation, broad ligament structures are realized by a bundle of several fibres. The mechanical behaviour of the ligaments is also based on characteristic curves, which describe the force-deformation-relation of the individual ligaments [25].

In addition ten facet joints are included with a contact modeling. If the two corresponding facet joint surfaces are in contact, a force is developed in opposite direction of the movement (2).


$$\begin{pmatrix} F_{y} \\ F_{y} \\ F_{y} \\ F_{y} \\ F_{x} \\ F_{z} \end{pmatrix} = \begin{cases} c_{y} \cdot \Delta r + d_{y} \cdot \Delta r^{2} \cdot c_{y} < 0; \ \Delta r < 0; \ \Delta r^{2} < 0 \\ c_{y} \cdot \Delta r & : \ c_{y} < 0; \ \Delta r < 0; \ \Delta r^{2} > 0 \\ 0 & : \ c_{y} < 0; \ \Delta r > 0; \\ 0 \\ 0 & 0 \end{cases}$$

$$(2)$$

A more detailed description of the biomechanical properties of the structure can be taken from [26].

C. Validation of the model

The model validation was performed by comparing the simulation results with FE results and in vivo data from the literature [27], [28], [29], [30]. As an example, the pressure of the intervertebral discs of the each functional spine unit (FSU) is shown in Fig. 3.

Comparing the intervertebral pressure of the FSUs, it can be seen that the values are not exactly in the same order concerning magnitude. Particularly obvious are the differences in the results for pressure in the FSUs L5-Sac via MBS modeling (Bauer) and the finite element modeling (Rohlmann).

The intersegmental rotations of the discs and the loads of the facet joints are also validated with corresponding results from literature. A detailed description of the validation process and relevant conclusions about possible causes of discrepancies in results are shown in [26].

III. REALIZATION OF THE DISC PARAMETER VARIATION

As has already been mentioned, different biomechanical parameters for the intervertebral disc stiffness can be found in literature. After the implementation of the different values, its effects on the spinal structures are examined. Lavaste in general states the value $8*10^8$ N/m for the stiffness c and in modeling a stiffness value of $9*10^8$ N/m. More stiffness values result from experimental studies of Markolf [18] $c=10*10^8$ N/m and Panjabi [19] $c=13*10^8$ N/m. Tencer [20] investigates the static load displacement properties of the intact and the injured human lumber intervertebral joint in vitro. He indicates a value of $c=5.2*10^8$ N/m for the stiffness.

To analyze the changes in the biomechanical behavior of the spinal structures, two series of studies are performed. In the first of all functional spinal units the same stiffness parameters are used. In the second study all possible combinations of the different stiffness parameters and all functional spinal units constitute the basic parameter configuration. With a total number of five different stiffness input parameters and five functional spinal units a possibility of 3125 combinations arises. For this number of combinations the loads of the intervertebral discs are calculated.

The most natural case, the upright position, was simulated as a load case. This means that an external force of 500N, which corresponds to the weight of the upper body, is applied in vertical direction on the top of the surface of vertebra L1. By this external force, the spinal structures are brought out of their equilibrium state before being transferred to a new one. This new equilibrium state is considered in the following results.

IV. RESULTS

A. Biomechanical behavior: 1st study

Considering the loads of the intervertebral discs, it can be seen that the forces in different FSUs are in a range between 400N and 500N (Fig. 4). In comparison the intervertebral discs of FSUs L5-Sac are loaded the lowest. The disc forces increase with in the subsequent FSUs. The largest force is developed in the intervertebral disc L2-L1. A possible reason could be the alignment of the vertebral bodies L2 and L1 and thus, the direction orientation of the force vector of the intervertebral disc L2-L1. In general, the smaller the inclination value of the intervertebral disc the higher the vertical component and the lower the horizontal component force of the intervertebral disc. In the presented MBS-model particularly the intervertebral disc of the FSU L2-L1 is slightly inclined so that the horizontal component of the intervertebral disc force is relatively small and the vertical force component correspondingly higher. A detailed explanation concerning the relationship between the alignment of the vertebrae and the force components can be seen in [25]. Within a FSU the reaction forces of the intervertebral disc are almost identical. Only small variation in disc forces can be reported in the FSUs L4-L5-L2-L3. The deviations are for this FSUs under 3%.

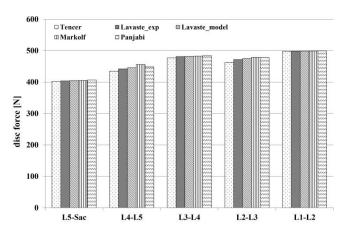


Fig. 4 Intervertebral disc force in comparison

The influence of different stiffness parameters on the intersegmental rotations is nearly similar. Figure 5 shows on the x-axis the intersegmental rotation in degrees and on the y-axis the FSUs. The positive x-values describe the ventral directed flexion and negative x-values the dorsal directed extension movement. Within the individual FSUs the rotational directions are identical.

But it should be noted that the simulated loading case, the upright standing position, generally causes only very small intersegmental rotations. This is due to the fact that this modelled lumbar spine is "well-balanced" and thus, the alignment of the vertebrae is physiologically optimally.

The comparison of the amounts of intersegmental rotation of the individual FSUs with different stiffness parameters shows that the smaller stiffness value of Tencer ($c=5.2*10^8$ N/m) causes smaller intersegmental rotation in the FSUs L5-Sac, L3-L4 and L2-L3 than using the higher stiffness value of Panjabi ($c=13*10^8$ N/m). The situation of the FSUs L4-L5 is exactly reversed. The higher stiffness parameters of Panjabi evoke larger ISR in these FSUs, than the stiffness parameters of Tencer, Lavaste_exp, Lavaste_model and Markolf. The largest deviations, 26%, can be found for the FSU L2-L3.

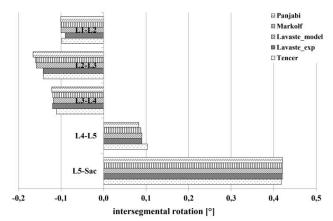


Fig. 5 Comparison of the intervertebral disc rotation

How does the intervertebral discs parameter variation affect the biomechanical behavior of spinal structures? Results of a detailed study of multibody simulation sensitivity

Fig. 6 shows the loads of the facets joints of the FSU using different interdiscal stiffness parameters. In this load case, the corresponding facet surfaces touch and according to the equation (2) build an appropriate contact force. The reason, why only a very small force is built in the FSU L1-L2, is the alignment of the facet surfaces with respect to the acting external force. In particular, the facet surfaces of the FSU L1-L2 are aligned in parallel to the line of action of the external force so that the two surfaces slide past each other and have only little contact. In this case, a very small contact force is build up. It is evident that for all FSUs the facet force is higher when using small interdiscal stiffness parameters.

The stiffness has the biggest impact on the FSU L2-L3. In this FSU the smaller stiffness value of Tencer also causes higher loads of the facet joints than the higher stiffness value of Panjabi. This deviation can be justified by the above described characteristic of the intersegmental rotations. For this FSU L2-L3 the ISR has a direct impact on the loads of the facet joints. Due to higher backward tilting the posterior facet joints are more heavily loaded in this FSU.

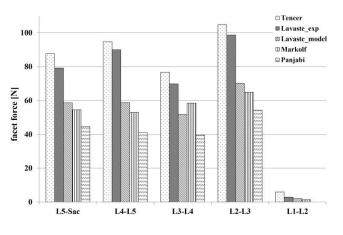


Fig. 6 Comparison of the facet loads

B. Biomechanical behavior: 2nd study

The large amount of result data, which corresponds to a number of 3125 simulations, allows an even more intensive insight into the sensitivity of the model with respect to parameter variation. In this process the parameter configuration is determined in which the intervertebral discs of each FSU are loaded to the maximum and minimum (Table 1), (Table 2). In addition, the mean load of the intervertebral discs of each FSU and the standard deviation are calculated (Fig. 7).

Table 1 Maximum load of the intervertebral discs

	max. F _{disc} [N]	L5-Sac [N/m]	L4-L5 [N/m]	L3-L4 [N/m]	L2-L3 [N/m]	L1-L2 [N/m]
L5-Sac	435,59	10*10 ⁸	9*10 ⁸	8*10 ⁸	10*10 ⁸	9*10 ⁸
L4-L5	462,88	10*10 ⁸	9*10 ⁸	8*10 ⁸	10*10 ⁸	9*10 ⁸
L3-L4	494,96	10*10 ⁸	13*10 ⁸	10*10 ⁸	10*10 ⁸	5,2*10 ⁸
L2-L3	487,62	10*10 ⁸	9*10 ⁸	8*10 ⁸	10*10 ⁸	9*10 ⁸
L1-L2	499,71	9*10 ⁸	8*10 ⁸	10*10 ⁸	8*10 ⁸	10*10 ⁸

Comparing the maximum loads of the intervertebral discs with those who were reached by the parameter configuration in Fig. 4, it can be seen that the load of the FSUs are nearly equal.

Table 2 Minimum load	l of the	e intervertebral	discs
----------------------	----------	------------------	-------

	min. F _{disc} [N]	L5-Sac [N/m]	L4-L5 [N/m]	L3-L4 [N/m]	L2-L3 [N/m]	L1-L2 [N/m]
L5-Sac	266,04	9*10 ⁸	13*10 ⁸	13*10 ⁸	5,2*10 ⁸	10*10 ⁸
L4-L5	299,55	9*10 ⁸	8*10 ⁸	13*10 ⁸	5,2*10 ⁸	5,2*10 ⁸
L3-L4	345,65	9*10 ⁸	8*10 ⁸	13*10 ⁸	5,2*10 ⁸	5,2*10 ⁸
L2-L3	335,78	10*10 ⁸	8*10 ⁸	13*10 ⁸	5,2*10 ⁸	5,2*10 ⁸
L1-L2	455,90	9*10 ⁸	13*10 ⁸	13*10 ⁸	5,2*10 ⁸	10*10 ⁸

By contrast, highly different is the variance between the maximum values and the minimum values of Table 1 and Table 2. For example, the difference of the disc loading of the FSU L5-Sac lies at 169N, which corresponds to a 39% increase of the intervertebral disc loading. Conversely, this means if selecting the parameter configuration of the case "minimum load situation", small values are calculated for the disc forces, but this does not necessarily have to be correct. This example shows that, depending on the choice of parameters configuration, the input parameter stiffness can still strongly influence the load situation of the intervertebral discs.

The mean values of the intervertebral disc force, calculated from the 3125 parameter combinations, and the corresponding standard deviation are shown in Fig. 7. The standard deviation of the intervertebral disc forces is calculated as follows

$$SD = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{(n)}$$
(3)

with x_i the i-th element of the sample, \bar{x} the mean value and n the numbers of values.

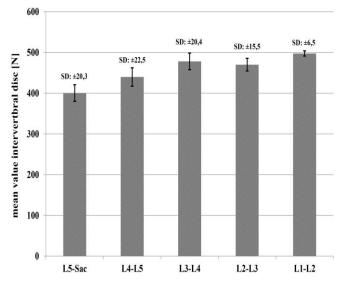


Fig. 7 Mean values and standard deviation

International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661, Volume-2, Issue-9, September 2015

V. CONCLUSION

This study investigating the influence of the intervertebral disc stiffness parameter on the biomechanical behavior of the lumbar spine shows that some structures are less sensitive to changes of the intervertebral disc stiffness than others, such as the facet joints. As shown above, within each FSUs the facet joints are more than twice as heavily loaded. These significant differences in the facet loads, which have been purely caused by the variation of the intervertebral discs stiffness, underline that the modeling results largely dependent of the input parameters.

Although, according to Fagan [31], the intervertebral disc is the most critical component in most finite element models of the spine and its representation in the models therefore of great importance, it is also essential to evaluate the parameter influence of further spinal structures. Therefore, in a further study, we will investigate the influence of different characteristic curves of the ligaments, which are found in the literature.

In conclusion, the characteristics of the individual spinal structures cannot be considered in isolation, but the biomechanical behavior of certain structures can influence other structures. Lastly, it should be noted that, after further sensitivity analyses, we target patient-specific preoperative simulations to predict the effects on spinal fusion in overweighed and obese patients and to identify the best possible surgical option.

ACKNOWLEDGMENT

This work was carried out in the MTI Mittelrhein, Institute of Medical Engineering and Information Processing, University of Koblenz-Landau, Koblenz.

REFERENCES

- H.-J. Wilke, F. Rohlmann, C. Neidlinger-Wilke, K. Werner, L. Claes, and A. Kettler, "Validity and interobserver agreement of a new radiographic grading system for intervertebral disc degeneration: Part I. Lumbar spine" in *European Spine Journal*, vol. 15, no. 6, 2006, pp. 731-731.
- [2] L. Benneker, P. F. Heini, M. Alini, S. E. Anderson, K. Ito, "2004 Young Investigator Award Winner: Vertebral Endplate Marrow Contact Channel Occlusions and Intervertebral Disc Degeneration" in *Spine*, vol. 30, no. 2, 2005, pp. 167-173.
- [3] S. Hoppe, S. Quirbach, T. Mamisch, F. G. Krause, S. Werlen, L. Benneker, "Axial T2* mapping in intervertebral discs: a new technique for assessment of intervertebral disc degeneration." in *European Radiology* 2012 Sep., vol. 22, no. 9, 2012, pp. 2013-2019.
- [4] B. Peng, S. Hou, W. Wu, C. Zhang, Y. Yang, "The pathogenesis and clinical significance of a high- intensity zone (HIZ) of lumbar intervertebral disc on MR imaging in the patient with discogenic low back pain" in *European Spine Journal*, vol. 15, no. 5, 2006, pp. 583-785.
- [5] H.-J. Wilke, P. Neef, B. Hinz, H. Seidel, L. Claes, "Intradiscal pressure together with anthropometric data - a data set for the validation of models" in *Clinical Biomechanics*, vol. 16, Supplement 1, 2001, pp. S111-S126.
- [6] K. Sato, S. Kiuchi, T. Yonezawa, "In Vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems" in *Spine*, vol. 24, 1999, pp. 2468-2474.
- [7] A. Nachemson, J. Morris, "In Vivo Measurements of Intradiscal Pressure" in *The Journal of Bone Joint Surgery*, vol. 46, no. 5, 1964, pp. 1077-1092.
- [8] H.-J. Wilke, P. Neef, M. Caimi, T. Hoogland, L. Claes, "New In Vivo Measurements of Pressures in the Intervertebral Disc in Daily Life" in *Spine*, vol. 24, no. 8, 2001, pp. 755-762.
- [9] A. Kettler, F. Rohlmann, C. Ring, C. Mack, H.-J. Wilke, "Do early stages of lumbar intervertebral disc degeneration really cause instability? Evaluation of an in vitro database" in *European Spine Journal*, vol. 20, no. 4, 2011, pp. 578-584.
- [10] C. Dennison, P. Wild, P. Byrnes, A. Saari, E. Itshayek, D. Wilson, Q. Zhu, M. Dvorak, P. Cripton, D. Wilson, "Ex vivo measurement of

lumbar intervertebral disc pressure using fibre-Bragg gratings" in *Journal of Biomechanics*, vol. 41, no. 1, 2008, pp. 221-225.

- [11] P. Cripton, S. Bruehlmann, T. Orr, T. Oxland, L.-P. Nolte, "In vitro axial preload application during spine flexibility testing: towards reduced apparatus-related artefacts" in *Journal of Biomechanics*, vol. 33, no. 12, 2000 ,pp.1559 - 1568.
- [12] W. Beitz, K.-H. Küttner (Editor). "Dubbel Taschenbuch für den Maschinenbau", 17. ed., 1990, Heidelberg: Springer.
- [13] J. Berkley, G. Turkiyyah, D. Berg, M. Ganter, S. Weghorst, "Real-Time Finite Element Modeling for Surgery Simulation: An Application to Virtual Suturing", *IEEE Transactions on Visualization & Computer Graphics*, vol. 10, no. 3, May/June 2004, pp. 314-325, doi:10.1109/TVCG.2004.1272730
- [14] S. Chomphan, M. Leekitwattana, "A reduced finite element model for analyzing the transverse shear stiffness of truss-like core sandwich beam" in *Journal of Computer Science*, vol. 7, no. 10, 2011, pp. 1474-1477.
- [15] X. Zhang, K. Kneupner, B. Kuhlenkötter, "A new force distribution calculation model for high- quality production processes" in *The International Journal of Advanced Manufacturing Technology*, vol. 27, no. 7-8, 2006, pp. 726-732.
- [16] R. Schwertassek, O. Wallrapp, "Dynamik flexibler Mehrkörpersysteme: Methoden der Mechanik zum rechnergestützten Entwurf und zur Analyse mechatronischer Systeme." Vieweg Friedrich + Sohn Verlag, isbn: 9783528066291
- [17] F. Lavaste, W. Skalli, S. Robin, R. Roy-Camille, C. Mazel, "Three-dimensional geometrical and mechanical modeling of the lumbar spine", in *Journal of Biomechanics*, vol. 25, no. 10, 1992, pp. 1153-1164.
- [18] K. Markolf, "Deformation of the Thoracolumbar Intervertebral Joints in Response to External Loads" in *The Journal of Bone Joint Surgery*, vol. 54, no. 3, 1972, pp. 511-533.
- [19] M. Panjabi, R. Brand, A. White, "Three-dimensional flexibility and stiffness properties of the human thoracic spine" in *Journal of Biomechanic*, vol. 9, no. 4, 1976, pp.185-192.
- [20] A. Tencer, A. Ahmed, D. Burke, "Some Static Mechanical Properties of the Lumbar Intervertebral Joint, Intact and Injured" in *Journal of Biomechanical Engineering*, vol. 104, no. 3, 1982, pp. 193-201.
- [21]P. Reimche, "Segmentierung computertomographischer Daten der Wirbelsäule", bachelor thesis, Universität Koblenz-Landau, Germany, 2010.
- [22] S. Nowack, "Visualisierung der Wirbelsäule anhand segmentierter Computertomographie-Daten zur weiteren Verwendung in SIMPACK", bachelor thesis, Universität Koblenz-Landau, Germany, 2010.
- [23] P. Roussouly, S. Gollogly, E. Berthonnaud, J. Dimnet, "Classication of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position." *Spine*, vol. 30, no.3, 2005, pp. 346-353.
- [24] U. Hausen, "Entwicklung von 3D-Simulationsmodellen für die computergestützte Operationsplanung bei chirurgischen Eingriffen an der Lendenwirbelsäule, phdthesis. Universität Koblenz-Landau, Germany, 2014.
- [25] S. Bauer, D. Paulus, E. Keller, "How do Different Load Cases Affect the Spinal Structures of a Well-balanced Lumbar Spine? A Multibody Simulation Analysis" in *International Journal of Innovative Research in Computer Science & Technology (IJIRCST)*, vol. 3, no. 5, 2015, pp.28-33.
- [26] A. White, M. Panjabi, *Clinical biomechanics of the spine* (2rd ed.), Philadelphia: J.B. Lippincott Company, 1991.
- [27] H.-J. Wilke, P. Neef, M. Caimi, T. Hoogland, L. Claes, "New In Vivo measurement of pressure in the intervertebral disc in daily life." Spine, vol. 24, 1999, pp. 755-762.
- [28] A. Rohlmann, T. Zander, M. Rao, G. Bergmann, "Applying a follower load delivers realistic results for simulating standing" in *Journal of Biomechanics*, vol. 42, 2009, pp.1520-1526.
- [29] K. Sato, S. Kikuchi, T. Yonezawa, "In Vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems" in *Spine*, vol. 24, 1999, pp. 2468-2474.
- [30] K. Wood, P. Kos, M. Schendel, K. Persson, "Effects of position on the sagittal-plane profile of the thoracolumbal spine" in *Journal of spinal disorders*, vol. 9, no. 2, 1996, pp. 165-169.
- [31] M. Fagan, S. Julian, D. Siddall, A. Mohsen, "Patient specific spine models - Part I: finite element analysis of the lumbar intervertebral disc a material sensitivity study.", in *Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine* vol. 216, 2002, pp. 299-314.

How does the intervertebral discs parameter variation affect the biomechanical behavior of spinal structures? Results of a detailed study of multibody simulation sensitivity

CSabine Bauer Head of the general university sports and research-member of the Institute for Medical Engineering and Information Processing, Research priorities: spinal biomechanics, kinematics of the spine, Biomechanical computer modeling, basic research in the field of implant modeling, phd degree in natural sciences (Dr. rer. nat.), University of Koblenz-Landau, Campus Koblenz, Award for outstanding academic achievement in the context of the phd thesis by the Faculty 3: Mathematics / Natural Sciences, University Koblenz-Landau,

exemplary publications: [1] S. Bauer, D. Paulus, 'Analysis of the Biomechanical Effects of Spinal Fusion to Adjacent Vertebral Segments of the Lumbar Spine using Multi Body Simulation.' In: International Journal of Simulation- Systems, Science and Technology- IJSSST V15. vol. 15, No. 2., 2015 pp. 1-7. [2] S. Bauer, C. Wasserhess, D. Paulus, 'Quantification of loads on the lumbar spine of children with different body weight - a comparative study with the help of computer modeling.' in: Biomedical Engineering. Berlin, Boston: Walter de Gruyter. vol. 59, 2014, pp. 884-888. [3] S. Bauer, U. Buchholz, 'Biomechanical Effects of Spinal Fusion to Adjacent Vertebral Segments.' In: Al-Dabass, David; Orsoni, Alessandra; Xie, Zheng: in UKSim-AMSS Seventh European Modelling Symposium on Computer Modelling and Simulation, EMS, IEEE Computer Society, 2013, pp. 158-163. [4] S. Bauer, Sabine, K. Gruber, U. Hausen, 'MBS-Model for the Estimation of Forces and Torques in the Structures of the Lumbar Spine. Middleton, John; Evans, Sam; Holt, Cathy; Jacobs, Christopher; Rohlmann, Antonius; Taylor, Bill (ed.), in The Proceedings of the 10th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering. Arup, 2012 pp. 670-675. [5] S. Bauer, U. Hausen, K. Gruber, 'Effects of Individual Spine Curvatures - A Comparative Study with the Help of Computer Modelling.' Dössel, Olaf (ed.), in Biomedizinische Technik. Berlin: de Gruyter. vol. 57, 2012, pp. 132-135. [6] U. Hausen, S. Bauer, K. Gruber, 'Biomechanical Effects of a Spinal Implant - Investigation through MBS Computer Modeling.' Dössel, Olaf (ed.), in Biomedical Engineering / Biomedizinische Technik. de Gruyter. vol. 57., 2012, pp. 136-139. [7] Bauer, Sabine and Paulus, Dietrich and Keller, Eva 'How do Different Load Cases Affect the Spinal Structures of a Well-balanced Lumbar Spine? A Multibody Simulation Analysis,' International Journal of Innovative Research in Computer Science and Technology 3, no.5 (2015), 28-33.

of faculty 4: Computer Science 2004 – 2008, Teaching Image analysis and Computer vision, Image processing, C++ and research-member of the Institute for Medical Engineering and Information Processing.

Research priorities: image registration, reconstruction, segmentation and image analysis. Habilitation at the Chair of Pattern Recognition (computer science 5), Universität Erlangen-Nürnberg, with the theme "Active Image Understanding".

exemplary publications: [1] M. Grzegorzek, D. Paulus, M. Trierscheid, D. Papoutsis, 'Teeth Segmentation in 3D Dentition Models for the Virtual Articulator.' in Image Processing (ICIP), 17th IEEE International Conference on. IEEE Computer Society. 2010, pp. 3609-3612. [2] H. Koehler, T. Wittenberg, D. Paulus, Dietrich, 'Detection and Segmentation of cervical cell nuclei.' in *Biomedizinische Technik*. Schiele und Schön, Berlin, Supplementary vol. 1, Part 1, 2005, pp. 588-589. [3] F. Neuhaus, A. Mützel, D. Paulus 'Fast Registration of Three-Dimensional Laser Scans without Initial Guess.' In The Journal of Imaging Science and Technology. vol 58. no. 6. 2014, pp. 60403_1-60403_6. [4] M. Prinzen, F. Wagner, S. Nowack, R. Schulz-Wendtland, D. Paulus, T. Wittenberg, 'Computer-Aided Detection of Lesions in Digital Breast Tomosynthesis Images.'in Bildverarbeitung für die Medizin 2014. Berlin: Springer. 2014, pp. 162-167. [5] D. Paulus, 'Object Oriented Image Segmentation.' In Proceedings of 4. Int. Conf. on Image Processing and its Applications. Maastrich, 1998, pp. 482-485. [6] D. Paulus, 'Object Oriented Image Segmentation.' in Proceedings. 4. International Conference on Image Processing and its Applications. Maastrich, 1992 pp. 482-485.