

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-2, Issue-7, July 2015

 112 www.ijeas.org



Abstract— One challenge in node-link diagrams is how to

efficiently provide a node placement or layout that will yield a

meaningful graph visualization. For simple structures, the

system needs only a set of aesthetic choices to provide a useful

graph—sometimes even a hand-drawn visualization could

suffice. But for large, complex structures, effective layouts are

harder to create, which motivates continual interest in graph

layout algorithms as an integral part of visualizing complex

networks. Although most traditional work involves developing

more efficient layout methods for static graphs, more recent

efforts have also focused on finding effective ways to generate

dynamic graphs of time-varying networks.

 This paper discusses the various aesthetic criteria's which

improve the readability of graphs and helps in how to choose

proper layout algorithm for specific data to make the

visualization better. This paper also discusses the different

graph layout approaches which are used as the basis for

developing many other new and improved graph layout

algorithms helping in better visualization of graphs. Some

easy-to-program network layout approaches are discussed here,

with details given for implementing each one. This paper is

mainly focused on the basic graph layout approaches which are

used in "GUESS" the graph visualization and exploration

software. This paper is also intended to beginners who are

interested in programming their own network visualizations, or

for those curious about some of the basic mechanics of graph

visualization.

Index Terms— Graph Visualization, Graph Layouts, Layout

algorithms, GUESS.

I. INTRODUCTION

 Graph layout is concerned with placing a set of vertices and

edges in the drawing in such a way that the reader of a graph

can easily identify and understand the contents of the graph.

When trying to place the vertices and edges of the graph,

current graph layout methods aim to place the parts of the

graph according to various aesthetic criteria to improve

readability. A layout is a "good'' layout if the layout achieves

a majority of the aesthetic criteria. These aesthetics have been

determined by research into the cognitive efforts of the human

mind. Work by Ware et al. in [1] have tried to collate some

important aesthetic criteria when laying out a graph. These

include: 1) Minimal edge crossings, 2) Minimal edge bends,

3) Preservation of symmetry, 4) Nodes and edges should be

evenly distributed in the drawing area, 5) Long edges should

be avoided and deviation in edge lengths should be small, 6)

Connected vertices should be close to each other, but the

Himanshu Sharma, Computer Science & Engineering Department,

Arya College of Engineering & Information Technology, Jaipur, Rajasthan,

India, 9460867762, himanshu1182@gmail.com

Vishal Srivastava, Computer Science & Engineering Department, Arya

College of Engineering & Information Technology, Jaipur, Rajasthan, India,

9214052387, vishal500371@yahoo.co.in

nodes shouldn't overlap each other or with edges in the layout,

7) The area used for drawing should be as small as possible, 8)

The aspect ratio of drawing area is also be important, 9)

Conform to the frame.

 The aesthetic criteria mentioned are applied to a layout

based upon various characteristics of a graph such as

symmetry, hierarchical placement, etc. However there has not

yet been one algorithm that has determined a set of aesthetics

for graphs in all application domains. For example, a user may

want a layout that preserves the symmetrical nature of a graph

as shown in Fig. 1(a), however an algorithm that is more

concerned with minimizing the number of edge crossings may

layout the graph like that in Fig. 1(b) . The graph in Fig. 1(b)

does not make the symmetry obvious to the reader, contrary to

the wishes of the user. This is where the non-interactivity of

graph layout algorithms can seriously detract from the quality

and presentation of a final layout, and ultimately from what

the users wants.

 Fig. 1(a) Fig. 1(b)

Figure 1. A graph that is symmetrical (Fig. 1(a)), and the same

 graph with minimized edge crossings (Fig.1(b)).

 Available at [2].

 Trying to achieve all these aesthetic criteria is considered

to be difficult. Moreover, if you want to meet several criteria

at the same time, an optimal solution simply may not exist

with respect to each individual criteria because many of the

criteria are mutually contradictory. Time-consuming trade-

offs may be necessary. In addition, it is not a trivial task to

assign weights to each criteria. Multicriteria optimization is,

in most cases, too complex to implement and much too time-

consuming. For these reasons, layout algorithms are often

based on heuristics and may provide less than optimal

solutions with respect to one or more of the criteria.

Fortunately, in practical terms, the layout algorithms will still

often provide reasonably readable drawings.

 Various algorithms have been devised, and integrated into

static layout tools, to calculate the best position of the

vertices, and the routing of the edges in order to produce a

readable graph, with attempts to achieve the aforementioned

aesthetic goals. Some of the popular approaches for the graph

layouts present in the GUESS [3]software are discussed in

this paper. GUESS is a novel system for graph exploration

that combines an interpreted language with a graphical front

end that allows researchers to rapidly prototype and deploy

new visualizations. GUESS also contains a novel, interactive

interpreter that connects the language and interface in a way

Analysis of Various Graph Layout Approaches Used

in GUESS Software

Himanshu Sharma, Vishal Srivastava

https://en.wikipedia.org/wiki/Aspect_ratio

Analysis of Various Graph Layout Approaches Used in GUESS Software

 113 www.ijeas.org

that facilities exploratory visualization tasks. GUESS use the

Gython language for this purpose. The GUESS system is an

attempt to combine analysis and visualization into one

package that supports Exploratory Data Analysis (EDA) for

graphs. It thus distinguishes itself from solutions that require

one system to perform analysis, such as partitioning (e.g.

using Analytic Technologies‘ UCINET), followed by a

different program for rendering (e.g. Pajek [4] or GraphViz

[5]). Interactive exploration is difficult when a user is forced

to go back and forth between the analysis and the

visualization packages. Moreover , GUESS software is easily

available for download on internet and can be used free of

cost.

II. RELATED WORK ON GRAPH LAYOUT AND LAYOUT

ALGORITHMS

 A lot of work has been done in the area of graph drawing,

graph layouts and graph visualizations which includes the

topics like aesthetics of graph drawing, various types of graph

layout models for displaying of different types of graphs,

generation of graphs, transition of graphs to a new state, how

to visualize the graphs better, static and dynamic visualization

of graphs etc. Some of the researchers who works on the

above topics and related to the graph layout approaches

discussed in this paper are as given.

 Peter Eades with Giuseppe Di Battista, Roberto Tamassia,

and Ioannis G. Tollis [6],[7] worked on Graph drawing and

developed various algorithms for drawing graphs and

algorithms for the visualization of graphs. In their work they

discussed lots of the concept about the better graph drawing

and visualization approaches. They also work on 3D drawings

of graphs. P. Eades [11] has also worked on spring

algorithms, maintenance of the "mental map" in dynamically

changing drawings, heuristics for reducing the number of

edge crossings in layered graph drawings, and visual display

of clustering information in graphs. He is the first who use

the concept of the combination of attractive forces on adjacent

vertices, and repulsive forces on all vertices in spring

algorithms. This concept still remains the base of various

spring embedded algorithms with further continuous

improvements. Kamada and Kawai[2], proposed a variation

to Eades' Spring-algorithm. Their algorithm uses in its

computations the desirable "geometric" (Euclidean) distance

between two vertices in the drawing as the "graph theoretic"

distance between them in the corresponding graph. T. M.

Fruchterman and E. M. Reingold [21], also worked on graph

drawing by force-directed placement by using the concept of

temperature and cooling. They do not have the explicit

concept of energy, and hence could not detect a stopping

condition, they simply used 50 iterations every time. Going

back to 1963, the graph drawing algorithm of Tutte [24], is

one of the first force-directed graph drawing methods based

on barycentric representation. R. davidson and D. Harel [20],

worked on drawing nice looking undirected straight line

graphs using simulated annealing. Arne Frick, Andreas

Ludwig, Heiko Mehldau [26], proposed a fast adaptive layout

algorithm for undirected graphs named as GEM. This

algorithm include the concept of a local temperature,the

attraction of vertices towards their barycenter and the

detection of oscillations and rotations.

 J. M. Six and I. G. Tollis [19], worked on the framework

for circular drawings of networks and circular drawings of

biconnected Graphs, and also developed a visualization tool

named Vistool. Peter Eades [6],[7] discussed the concept and

algorithms of radial layout for better space utilization.

Ka-Ping Yee, Danyel Fisher, Rachna Dhamija, and Marti A.

Hearst [14], worked on animated exploration of dynamic

graphs with radial layouts. Classical MDS, was first

introduced by W.S. Torgerson [53]. Further works are carried

out by J. B. Kruskal [30],[36] who discussed the concept of

classical, metric and nonmetric multidimensional scaling.

R.N. Shepard [37],[38],[51] analyses the proximities in

multidimensional scaling with an unknown distance function.

I. Borg and P. Groenen [34], worked on the theory and

applications of modern multidimensional scaling. B.

Bollobas [55], worked on concept of random graphs. The

systematic study of random graphs was started by P. Erdos

and A. Renyi [56]. They discussed on the evolution of random

graphs [57]. S. Janson, T. Luczak, A. Rucinski [58], also

worked on random graphs. They give various algorithms,

theorems, functions and other concepts about random graphs.

III. PRESENT WORK: ANALYSIS OF DIFFERENT GRAPH

LAYOUT APPROACHES PRESENT IN GUESS.

 Graph or network-like structures are among the most

commonly used types of visual representations. Automatic

layout of graphs plays an important role in many applications

like, Visual Programming, Software Engineering (e.g. Flow-

Charts, UML, Dependency visualization, Repository

Structures), Engineering (e.g. Circuit Diagrams, Molecular

Structures, Chemical Formulas), Sciences (e.g. Genome

Diagrams) and currently a particularly hot-topic, Web-

Visualization. Almost always when relational data that has

been obtained as the result of an automated operation such as

a database or repository computation, a web-crawl or any

other kind of computation, it has to be visualized, we are

facing the problem of automatic graph layout.

 In this paper, some of the basic graph layout approaches,

their features, advantages and drawbacks are discussed. The

research in this paper gives an overall analysis of the present

visualization techniques, which is vital to the future

development of related algorithms and technologies.

IV. DIFFERENT GRAPH LAYOUT APPROACHES IN GUESS

 The approaches discussed here are basis of graph drawing

and is used in many graph visualization tools. This paper is

mainly focused on the basic graph layout approaches which

are used in "GUESS" the graph visualization and exploration

software.

A. Circular Layout Approach (Drawing on a single

 embedding circle)

 A circular drawing of a graph (see Fig. 2 for an example) is

a visualization of a graph with the following characteristics:

1) The graph is partitioned into clusters,

2) The nodes of each cluster are placed onto the

 circumference of an embedding circle,

3) Each edge is drawn as a straight line, and

4) A node cannot be occluded by another node or by an

 edge.

https://en.wikipedia.org/wiki/Roberto_Tamassia
https://en.wikipedia.org/wiki/Force-based_algorithms_(graph_drawing)
https://en.wikipedia.org/wiki/Force-based_algorithms_(graph_drawing)
https://en.wikipedia.org/wiki/Crossing_number_(graph_theory)
https://en.wikipedia.org/wiki/Crossing_number_(graph_theory)
https://en.wikipedia.org/wiki/Layered_graph_drawing
https://en.wikipedia.org/wiki/Cluster_analysis

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-2, Issue-7, July 2015

 114 www.ijeas.org

 Fig. 2(a) Fig. 2(b)

Figure 2. A graph with arbitrary coordinates for the nodes (Fig.

 2(a)) and a possible circular drawing of the same graph

 (Fig. 2(b)). Available at [19].

 Simple circular layout is based upon the various parameters

to be considered at the time of layouting. The parameters like

ordering of the nodes decides the crossing of edges in the

circle, the size of every node decides the radius and

circumference of a circle. The distance between the adjacent

nodes should be symmetric. These all parameters are
handled by only tweaking the following calculations for every

node as:-

LaidOutX = CenterX + Radius * cosine(Angle).

LaidOutY = CenterY + Radius * sine(Angle).

 To shift center of any cluster you need to modify the center

coordinates in the above models. Adjusting of the spreading

between the nodes will be added by incrementing the radius in

the above models. Next node will be placed at a deviation of

angle used in the above models. In this way tweaking is

performed in the circular layout by modifying the above

mathematical models.

 The circular layout is mainly used for small-medium sized

graphs data analysis and in the applications where that

application requires the visualization of information having

more emphasis on the aesthetics of drawing. In general, these

layouts can provide a compact presentation, focusing on

individual nodes and edges. Additionally, well-designed

circular layouts sometimes reveal global properties of the

graph such as symmetries and patterns of collective behavior.

Other advantage of a circular layout which can be seen in

some of these applications, such as bioinformatics or social

network visualization, is its neutrality by placing all vertices

at equal distances from each other and from the center of the

drawing, none is given a privileged position, countering the

tendency of viewers to perceive more centrally located nodes

as being more important

 These circular layouts have some limitation and problems.

An inherent problem with circular layouts is that the rigid

constraint on node placement often gives rise to long edges

and an overall dense drawing. Circular layouts shows

symmetric property, this strong regularity can also obscure

other information as these drawings can be very dense, and

following paths on them can be difficult. In these layouts, as

the nodes need to arranged on the circumference, it restricts

the area for the nodes to spread. This may incur in crossing

between the edges and hence we cannot minimize the

crossings beyond a certain extent. The ordering of the nodes is

also a critical dynamic problem which needs to solve in the

circular layout. Hence to resolve this problem, the topological

ordering with respect degree of a nodes can be used . This

ordering will select the highest degree node first and will

place all adjacent node according to the next immediate node

and applies the circle to all nodes in the ordering list.

Calculation of radius for the circle is also a difficult problem

considering the size parameters of the node which is variable

for every node entity in the graph. Boundaries of clusters need

to be calculated considering the size parameters of the graph

entities.

 The use of circular layouts are a good fit for

communications network topologies such as star or ring

networks, and for the cyclic parts of metabolic networks.

B. Improved Circular Layout Approach

 An inherent issue with circular layouts is that the rigid

restriction on node placement often gives rise to long edges

and an overall dense drawing. In improved circular layouts,

three independent, complementary techniques are used for

lowering the density and improving the readability of circular

layouts.

1) First technique, Places the nodes on the circle such that

edge lengths are reduced. This is accomplished with a new

algorithm.

2) Second technique, Enhances the circular drawing style by

allowing some of the edges to be routed around the exterior

of the circle. This is accomplished with an algorithm for

optimally selecting such a set of externally routed

edges. External routing can be very effective in reducing edge

crossings. Since exterior routing of an edge is inherently

longer than interior routing, utilize the exterior routing

carefully, and make sure that edges routed externally are

readable. Therefore, if possible do not allow any edge

crossing within the external face. Two edges cross in the

external face if and only if they cross internally.

3) Third technique reduces density by coupling groups of

edges as bundled splines that share part of their route. This

frees up drawing area without compromising structural

clarity. Considering non-straight line edges opens up even

more possibilities for better clarity.

 Together, these techniques are able to reduce clutter,

density and crossings compared with existing methods. This

method also reduces the edge lengths. Figure 3 shows

implementation of these techniques one by one and the final

Fig. 3(e) shows combining effect of all these techniques on

layout in Fig. 3(a). The final Fig. 3(e) has much better clarity

and visualization.

Figure 3. Variations on circular layouts of a random graph (|V | =

 80,|E| = 241)

Fig. 3(a) random order;

Fig. 3(b) edge-length minimizing order;

Fig. 3(c) bundling edges to save ink and to improve area utilization

 (colors used to enhance readability);

Fig. 3(d) exterior routing lessens crossings and alleviates density;

Fig. 3(e) combining exterior routing with edge bundling.

https://en.wikipedia.org/wiki/Bioinformatic
https://en.wikipedia.org/wiki/Network_topology
https://en.wikipedia.org/wiki/Star_network
https://en.wikipedia.org/wiki/Ring_network
https://en.wikipedia.org/wiki/Ring_network
https://en.wikipedia.org/wiki/Metabolic_network

Analysis of Various Graph Layout Approaches Used in GUESS Software

 115 www.ijeas.org

 This drawing convention is mainly used for small and

medium sized networks. It can be used for the layout of

networks and systems management diagrams, where it

naturally captures the essence of ring and star topologies. It

can be also used for other kinds of graphs, such as social

networks, metabolic networks and WWW graphs. The usually

unvisualized characteristics of self-organization, emergent

structures, knowledge exchange, and network dynamics can

be seen in the these drawings. Resource bottlenecks,

unexpected work flows, and gaps within the organization are

clearly shown in these circular drawings.

 This drawing approach is a variant of circular drawing, so

many disadvantages are same as of circular layouts like as the

nodes need to arranged on the circumference, it restricts the

area for the nodes to spread, it has long edges and exterior

routes, overall dense drawing, cannot minimize the crossings

beyond a certain extent, computation of radius of the circle

etc.

C. Radial Layout Approach

 Radial layout graph drawing algorithms are a well known

method for creating drawings of rooted trees [6, 7, 8, 9]. In

radial layout approach, the root vertex of a tree is positioned

at the center of the drawing with descendant vertices situated

on concentric circles emanating from it as shown in Fig. 4.

Figure 4. A radial layout graph drawing of a tree rooted at r

 Fig. 4(a), and the division levels of v's annulus wedge

 Fig. 4(b).

 For a tree T with a height k, the layers of concentric circles

are labeled as C1,C2......, Ck and each vertex is placed on circle

Ci, where i is the depth of the vertex in the rooted tree [20].

Using a defined heuristic, a radial layout drawing algorithm

allocates each vertex a space in the drawing, known as its

annulus wedge. This wedge confines the layout of a vertex's

subtree to particular area in the drawing. A vertex's annulus

wedge is divided among its descendants at subsequent levels

in the subtree (Fig. 4(b)).

 For a tree T rooted at a vertex r, a new radial layout graph

drawing T' is obtained as follows. The algorithm first places

the root vertex at the center of the viewing plane and allocates

it an annulus wedge of the entire drawing (360
0
). This space is

divided among the root's descendants: the annulus wedge for a

child vertex c of v is based on the number of leaf vertices in

the subtree rooted at c proportional to the number of leaf

vertices in the subtree rooted at v. Each vertex is placed at the

center of its annulus wedge on a concentric circle

corresponding to its depth in the tree. The algorithm continues

down each subtree until positions for all of the graph's vertices

in the new drawing T' are calculated. A new view of the

network is constructed every time the user selects a new focal

point vertex.
 The advantage of the radial layout approach are: First one

is the root node is taken as the center of graph so it helps to

get focus on a particular node and its relations. Second, since

the length of each orbit increases with the radius, there tends

to be more room for the nodes. A radial tree will spread the

larger number of nodes over a larger area as the levels

increase. Third, the radial tree graph also solves the problem

of drawing a tree so that nodes are evenly distributed. Radial

layouts are used to display large hierarchies networks.

 However, like with any graph drawing algorithm, the

drawings generated by radial layout algorithms do have some

drawbacks. The number of nodes increases exponentially

with the distance from the first node, whereas the

circumference of each orbit increases linearly, so by the outer

orbits, the nodes tend to be packed together. Although the use

of concentric circles does make it easier for users to ascertain

the depth of a vertex in a tree, these circles confine vertices to

positions that may not be optimal and can make it difficult for

users to visually distinguish siblings from their parent. This is

because sibling vertices may be spread out widely on their

corresponding circle, and thus the lengths of the edges to their

parent are dramatically different.

 For example, the drawings in Figure 5 depict the same tree

from Figure 4 but based on a different root vertex. In Figure

5(b), the edges marked by arrows illustrate edges for sibling

vertices that are different in length. Another problem is that

radial layout drawings can still allow edge crossings, even if

the graph is planar (Figure 5(c)). These flaws can degrade the

readability of a graph.

Figure 5. A radial layout graph drawing of the same tree from

 Fig. 4(a), but with a different root vertex as the focal point

 (Fig. 5(a)). Fig. 5(b) illustrates how sibling vertices have

 variable edge lengths to their parent, and Figure 5(c)

 highlights edge crossings in the drawing.

 The radial layout is suitable for large and medium-sized

data analysis like to identify the center with complex and large

number of acts in a large database, typically telephone

message declarations, e-mail between records and financial

transactions, etc. Radial tree graph drawing algorithms are

used for representing large hierarchies, business relation

between families, marital ties between families, directory

structure of websites etc.

Figure 6. Showing business relations between families.

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-2, Issue-7, July 2015

 116 www.ijeas.org

D. Context-Free Radial Layout Approach

 Context-Free Radial Layout drawings of graph adhere to

three aesthetic goals: (1) minimize the number of edge

crossings (edges are drawn as straight- line segments), (2)

minimize the total angular difference between the root's

children's positions from the initial drawing to the new

drawing, and (3) maximize the angular resolution of

parent-child edges. These drawings conform to two

constraints: (1) the root vertex is placed at the center of the

drawing, and (2) vertices are equidistant to their parent vertex

in the tree. This approach is designed to prevent two specific

types of edge crossings: (1) edge crossings between sibling

vertices, and (2) crossings between the edge of a vertex to its

parent with one of its edges to its children.

 This graph visualization system allows users to explore the

structure and properties of a graph via multiple spanning

-tree-based drawings. Given a graph G, a user-selected vertex

r ϵV(G), and an initial graph drawing T' for G, this graph

drawing algorithm generates a new drawing of G based on a

spanning tree rooted at r extracted from G. This algorithm is

called as "context free" because the placement of children,

relative to the frame of reference of the parent, only depends

on the parent's position.

 This visualization system creates a new drawing for a graph

G with an initial drawing T' in three stages: First it extracts a

spanning tree T rooted at r from G using breadth- first search.

Second, by using this tree T, the system calculates the graph's

vertices relative polar coordinates from their positions in T'.

Based on these initial positions, the system then calculates the

vertices relative polar coordinates in the new drawing. Third,

Instead of using concentric circles where one circle is used for

positioning all the vertices for a given depth in the tree, this

algorithm creates drawings using a series of overlapping

circles that we call containment circles. Each non-leaf vertex

v ϵ V (T) is given its own containment circle centered at v and

only v's children are positioned on this circle. Figure 7(a) to

7(f) shows how a radial layout is generated from a normal

graph. Figure 8(a) to 8(f) shows the generation of a new radial

layout from Fig. 7(f) by selecting a new vertex as root. Figure

9(a) to 9(h) shows the generation of a graph with

Context-Free Radial Layout Approach in detail.

 This approach enables the drawing algorithm to position

sibling vertices close together and emphasize the parent-child

relationships in the tree much better than other layouts. It also

helps to see the graph with single user perspective by making

it root. These layouts has high-level layout space utilization in

the same proportion, with clearer hierarchy structure and less

edge crossings, and the clarity of clustering performance is

better. Also edge lengths decrease monotonically with

distance from root, and all siblings within a family are arrayed

along visually salient arcs equidistant from their common

parent. With regard to animating transitions, this approach

ensures that sibling edges never cross when a new focal node

is selected, and whenever the graph to be drawn is itself a tree.

 However, like with any graph drawing algorithm, the

drawings generated by context free radial layout algorithms

have the drawback that with every next level of containment

circles the radius of circle becomes half of the previous level

circle, so remote descendants of the root can become

vanishingly small on the viewing plane. Also the edge

crossings can occur when long subtrees encroach on

neighboring containment circles.

 Context free radial graph drawing algorithms are used for

representing large hierarchies, business relation between

families, marital ties between families, directory structure of

websites etc.

Figure 7. This graph visualization system first generates a

force-directed layout drawing of a graph with 50 vertices (Fig.

7(a)). A user then selects a vertex (indicated by the arrow)

to become the root of a new spanning-tree based drawing for

the graph (Fig. 7(b)). The movement of the graph's vertices

and edges is animated as the visualization system transitions

from the original drawing to the new drawing (Fig. 7(c) to

Fig. 7(e)). The animation sequence is complete when the

vertices reach their final positions in the new layout (Fig.

7(f)).

Analysis of Various Graph Layout Approaches Used in GUESS Software

 117 www.ijeas.org

Figure 8. Using the same spanning tree drawing from Fig.

7(f), a user selects a different vertex in the graph indicated by

the arrow to become the root of a new spanning-tree-based

drawing (Fig. 8(b)). The movement of the graph's vertices

and edges is animated as the visualization system transitions

from the original drawing to the new drawing (Fig. 8(c) to Fig.

8(e)). The animation sequence is complete when the vertices

reach their final positions in the new layout (Fig. 8(f)).

Working of a context free radial graph drawing approach

 Fig. 9(a) Fig. 9(b)

 In Figure 9(a), the root is first placed at the center of the

drawing along with its containment circle with a radius of R.

The root's annulus wedge is divided into three equal portions

of size Ψ and its first child is positioned at Ө.

 In Figure 9(b), the root's children are positioned on its
containment circle.

 Fig. 9(c) Fig. 9(d)

 Figure 9(c) each of the root's children is allocated a

separate containment circle with a radius of λ. The algorithm

then allocates space in the drawing to position v's children. v's

annulus wedge of size Ω is centered on the arc of v's circle

that is outside of the root's circle. The angles α and β are

relative to v's position

 Figure 9(d), v's annulus wedge is divided into four equal

parts of size Ψ. Each child of v is positioned in the center of

one v's annulus wedge subdivisions starting at Ө.

 Fig. 9(e) Fig. 9(f)

 In Figure 9(e) and Figure 9(f), the drawing algorithm

continues down the subtree rooted at v allocating containment

circles and annulus wedges for descendant vertices.

 Fig. 9(g) Fig. 9(h)

 Figure 9(g), the radius λ is half the size of that vertex's

parent's containment circle.

 Figure 9(h),The algorithm positions the rest of the graph's

vertices, resulting in the final drawing of graph.

Figure 9. The above diagram illustrates how context free

 radial graph drawing approach works and

 constructs a new drawing for a tree T rooted at r.

E. Spring layout

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-2, Issue-7, July 2015

 118 www.ijeas.org

 In the drawing of undirected graphs there is a problem of

"too much freedom". The spring algorithm (Eades [7], 1984)

is a successful layout creation algorithm for drawing an

undirected graph. The basic idea of the spring algorithm is to

treat a graph as a mechanical system, in which nodes are

replaced by steel rings and edges by springs connected to the

rings. All the springs have the same natural length k, and each

spring has a current length d. Given a pair of rings connected

by a spring, if k>d (spring is stretched), then the spring

attracts the rings; if k<d (spring is compressed), then the

spring repulses the rings; if k=d (Zero force & Zero energy),

then the rings are stable. The spring forces will attract or

repulse the rings until the system reaches the minimum

energy. This is called the balanced state. The strength of the

forces is determined by k and d. Eades[7] calculates the forces

using the functions:

where fa is the attractive force, fr is the repulsive force, and C1,

C2, C3, C4are coefficients. The Simple Algorithm given by

Eades [7] is

Algorithm SPRING(G:graph);

Place vertices of G in random locations;

Repeat M times

Calculate the force on each vertex;

Move the vertex C4 *(force on vertex)

Draw graph on CRT or plotter.

 Fig. 10(a) Fig. 10(b) Fig. 10(c)

Figure 10. Illustration of a generic spring embedder: starting from

 random positions, treat the graph as spring system and

 look for a stable configuration (Fig. 10(a) to Fig. 10(c)).

 The input of a spring algorithm is an undirected graph, and

the output of the algorithm is a drawing of the embedded

graph. The running time of a spring algorithm is O(n
2
), where

n is the number of the nodes. The layout generated by a spring

algorithm has two features: display of symmetry and uniform

edge length. A spring system is not guaranteed to generate a

good drawing for all graphs. The forces exerted on

some rings might be too strong or too weak, and the spring

system cannot arrive at the balanced state. One solution is to

adjust the coefficients; another is to adopt different force

models. Some implementations, however, also set a fixed

number of iterations, in order to end the spring forces in a

predictable time. There are some variants of the spring

algorithm that adopt different force models. All of these

algorithms are broadly called force-directed algorithms in

most literature.

F. Spring layout (Variant having spring system and

 electrical charges)

 Force-directed methods use analogies from physics to

compute the positions of a graph's vertices. Consider an

undirected graph G = (V, E) as a system of bodies (V),

influenced by forces (E). The layout algorithm's goal is to find

a configuration of those bodies where the sum of all forces is

minimized, i.e. it assigns every vertex to a position

such that the sum of forces which influence this vertex is 0.

 The model in the spring layout uses a combination of

springs and electrical forces. The edges correspond to

springs. The vertices correspond to equally charged bodies

which experience mutually repulsive forces in between them.

In the following, we denote vertices by u, v ϵ V , and by

R their position vectors in the two-dimensional

space. The length of the difference vector is denoted

by

i.e. the euclidian distance of the points (xu, yu) and (xv, yv).

Moreover, denotes the unit vector

which points from

The repulsive force that v experiences from u obeys the

Coulomb's law equation

where c0 ϵ R is a constant which determines the strength of the

repulsive force at either one of the vertices u or v. The spring

force experienced by v via the spring from u can be computed

by the Hooke's law equation.

where the constant c1 ϵ R denotes the strength of the spring

and l ϵ R denotes its natural length. The global force that is

acting upon a vertex v ϵ V , can be computed as follows:

Working of this algorithm is as follows:

 Vertices, which are not yet at equilibrium of forces,

experience a force. To relax the system, vertices are

iteratively moved towards the direction of their influencing

force. At time t, a vertex v experiences the force . After

these forces are computed for all vertices at time t, each vertex

v is moved by in its respective direction.

The constant avoids that the vertices are moved

too far. The simplest option to terminate the algorithm is to

stop after a certain number of iterations. Another option is to

compute the global force of the system at a time t. This can be

done as follows:

If Fglobal reaches/falls below a certain value (ideally, Fglobal =

0), then the computation can be stopped.

Analysis of Various Graph Layout Approaches Used in GUESS Software

 119 www.ijeas.org

 Fig. 11(a) Fig. 11(b) Fig. 11(c) Fig. 11(d)

Figure 11: Process showing how nodes of a graph in the spring

 embedder algorithm reaches to equilibrium position

 (Fig. 11(a) to Fig. 11(d)).

 In order to compute the force of a vertex v ϵ V , the

sum is computed. This computation is

done n(n-1) = O(n
2
) times per iteration. Vertices, which are

far apart, only experience a very weak repulsive force from

each other. Because of this, one can neglect these distant

vertices in the computation of the repulsive force. The force

 is computed only for vertices u whose distance to v

is (for a proper constant d ϵ R).

 The advantage of spring approach is that it gives relatively

good results in a simple and intuitive manner. The spring

system is a fast in speed and usually converges after 100

iterations or so. It avoids node overlapping and edge

crossings. It gives the symmetric layouts as output.

 The disadvantage is that the given algorithm only works for

connected graphs and for using it on disconnected graphs

additional exercise is to be done. The other drawbacks of the

approach are its running time complexity, possibility of

convergence to a poor local minima and do not have a good

termination condition.

 Spring models are generally not used for large networks

because there is a good chances that system is likely to settle

in a local minimum. They are used to visualize small size

networks. Spring models can be used to visualize small and

medium social networks (Fig. 12). Moreover with some

modifications can be used in bioinformatics including

phylogenetic trees, protein-protein interaction networks, and

metabolic pathways.

Figure 12. A Small Sized Social Network

G. Fruchterman and Reingold Layout (Based on

 Electrostatic forces & Temperature concept)

 Fruchterman and Reingold [21] replace the spring

embedder's repelling and attracting forces between pairs of

vertices by repelling forces

between every pair of vertices u and v, and additional

attracting forces

only between adjacent vertices. Parameter l describes the

optimum length of a single edge, and is set to c. Sqrt (cA / n),

where cA is the desired layout area, and c is an experimentally

chosen constant. These functions are cheaper to evaluate and

steeper, thus resulting in faster convergence. The algorithm to

find a stable configuration features an adaptive parameter

controlling the maximum displacement allowed.

 We have only two principles for graph drawing in this

Layout:

1) Vertices connected by an edge should be drawn near

 each other.

2) Vertices should not be drawn too close to each other.

 How close vertices should be placed depends on how

 many there are and how much space is available. For

 placing nodes we calculate the optimal distance k

 between vertices. Some graphs are too complicated to

 draw attractively at all.

There are three steps to each iteration:

1. Calculate the effect of attractive forces on each vertex,

2. Then calculate the effect of repulsive forces, and

3. Finally limit the total displacement by the temperature

and cooling concept.

 Temperature indicate the maximum distance a vertex can

travel when being updated. The idea is that the displacement

of a vertex is limited to some maximum value, and this

maximum value decreases over time (cooling); so, as the

layout becomes better, the amount of adjustment becomes

smaller and smaller.

 A special case occurs when vertices are in the same

position: our implementation acts as though the two vertices

are a small distance apart in a randomly chosen orientation:

this leads to a violent repulsive effect separating them.

We calculate k, the optimal distance between vertices as

where the constant C is found experimentally. We would like

the vertices to be uniformly distributed in the frame, and k is

the radius of the empty area around a vertex. If fa and fr are

the attractive and repulsive forces, respectively, with d the

distance between the two vertices, then

fa(d) = d
2
/k

fr(d) = -k
2
/ d

Figure 13. illustrates these forces and their sum versus

distance. The point where the sum of the attractive and

repulsive force crosses the x -axis is where the two forces

would exactly cancel each other out, and this is at k, the ideal

distance between vertices.

Figure 13. Forces versus distance

 Fig. 14(a) Fig. 14(b)
Figure 14. Fig. 14(a) Showing a graph. Fig. 14(b) Shows same graph of

 Fig. 14(a) after applying Fruchterman and Reingold algorithm. It

 is more symmetrical and balanced than previous one. Available

at [21].

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-2, Issue-7, July 2015

 120 www.ijeas.org

 This approach is simple, intuitive, and interactive. This

approach can produce good quality results for small and

medium sized graphs. The results are good in terms of

uniform edge length, uniform vertex distribution and showing

symmetry. This approach can be easily adapted and extended

and have flexibility due to which can be used in 3D graph

drawing, cluster graph drawing, constrained graph drawing

and dynamic graph drawing. The primary advantage of this

approach is speed.

 The disadvantage of this approach is poor local minima.

Large graphs have many local minima's so there is good

chances that system is likely to settle in a local minimum.

Second, because this approach had no explicit concept of

energy, and hence could not detect a stopping condition, so

simply 50 iterations every time are used; this was excessive on

the simpler graphs. Third is for a given vertex, repulsive force

from all other vertices needs to be calculated, this makes the

per iteration cost of the algorithm (O|V
2
|+|E|) with |V| the

number of vertices and |E| number of edges in the graph for

basic approach. This approach becomes slow as the networks

grow.

 This approach can be used to visualize small and medium

social networks like organizational network, communication

networks, collaboration networks. It can be used to visualize

information networks like WWW hyperlinks, blog networks,

citation networks. It can be used to visualize technological

networks like power grid, airline, road, river, telephone

networks. It can also be used to visualize biological networks

like metabolic networks, food web, neural networks etc.

It can also be used in visualize the tree structures and 3D

drawings.

Figure 15. Showing a collaboration network

H. GEM Layout

 GEM is short form for graph embedder. GEM layout

algorithm contains the concept of a local temperature, the

attraction of vertices towards their barycenter and the

detection of oscillations and rotations. The major design goal

was that interactive speed should be achieved even for

medium-sized graphs. We consider a drawing to be

interactive if it takes less than 2s to compute. Randomization

plays an important role in several places of the algorithm.

 The discussion of the GEM algorithm starts with the

observation that cooling schedules appear to give better

results than methods relying solely on a gradient descent, but

their running time is unsatisfactory. Temperatures as used in

GEM indicate the maximum distance a vertex can travel when

being updated. The temperature scale has a direct influence

on a suitable choice of other parameters, i.e. the constants

used in the formulae for the attractive and repulsive forces.

 Rather, the algorithm adapts to the data locally and does not

require global cooling as assumed by a schedule. For each

vertex, a local temperature is defined that depends on its old

temperature and the likelihood that the vertex oscillates or is

part of a rotating subgraph. Local temperatures raise if the

algorithm determines that a vertex is probably not close to its

final destination. The global temperature is defined as the

average of the local temperatures over all vertices. Thus, it

indicates how stable the drawing of the graph is. This

algorithm consists of two stages, an initialization stage and an

iteration stage. The initialization consists of the assignment of

an initial position, impulse and temperature to each vertex.

The main loop updates vertex positions until the global

temperature is lower than a desired minimal temperature or

the time allowance has expired.

 It is found in practice that most graphs would easily cool

down to Tmin, we cannot exclude the possibility of a graph

moving chaotically between rounds. This can be solved by

choosing Tmin larger. Vertices are moved sequentially

according to a choice function. Assuming that vertex v was

chosen to be updated, the attractive and repulsive forces

acting on v are computed. In addition, a gravitational force

pulling the vertex towards the barycenter of the vertex cluster

is assumed. The use of gravitation accelerates the

convergence of GEM. In addition, it helps to keep

disconnected graphs and loosely connected components

together.

 The resulting force is scaled with v‘s current temperature to

form the impulse of v such as to reflect the algorithm‘s

―knowledge‖ of the state of computation. A low temperature

indicates either that the layout is almost stable (at least

locally) or that there exist oscillations or rotations. In each

case, movements should be short. GEM has the ability to

leave wells containing local energy minima, since local

temperature increases change the global energy distribution.

Relative to the old distribution, uphill moves become

possible. Unfortunately, this feature makes proofs of

convergence hard, if not impossible.

 The advantages of this layout are as follows: This algorithm

achieves drawings of high quality on a wide range of graphs

with standard settings. The algorithm is fast (is significantly

faster than Kamada and Kawai [2] or Fruchterman and

Reingold Layout [21] algorithms), being thus applicable on

general undirected graphs of substantially larger size and

complexity. The GEM layout approach is optimal to layout

cyclic as well as acyclic graphs. Aesthetically pleasing

solutions are found in most cases. Also, the additional

attractive force has two important effects: unconnected and

loosely connected components are not separated too far, and it

may lead to a 30% increase in convergence speed.

 The one drawback is that the output of the algorithm is

often depends on the original layout of the graph. It will be

more jumbled if the underlying graph is very jumbled. It may

at times help to first provide one of the other algorithms,

which could put the vertices in a slightly better order, and then

apply the GEM layout algorithm. The other disadvantage is of

oscillating nodes. In some cases, a node may not find its final

position even after more than 100 iterations, and will alternate

between several positions indefinitely. The main reason for

this phenomenon is that the movement calculation is not

continuous, but discrete.

Analysis of Various Graph Layout Approaches Used in GUESS Software

 121 www.ijeas.org

 The GEM approach can be used for somewhat larger

graphs compared to Kamada and Kawai [2] approach and

Fruchterman and Reingold [21] approach. It can be used on

different types of somewhat complex graphs and trees. This

approach can be used to visualize medium and large sized

undirected social networks, information networks,

technological networks, biological networks etc. It can also be

used in visualize the tree structures and 3D drawings.

I. Kamada Kawai Layout (Spring model based on Euclidean

 distance)

 The 1989 algorithm of Kamada and Kawai [2], introduced

a different way of thinking about ―good‖ graph layouts.

Whereas the algorithms of Eades [7] and Fruchterman-

Reingold [21] aim to keep adjacent vertices close to each

other while ensuring that vertices are not too close to each

other, Kamada and Kawai [2] take graph theoretic approach.

 In this model, the ―perfect‖ drawing of a graph would be

one in which the pair-wise geometric (Euclidean) distances

between the drawn vertices match the graph theoretic

pair-wise distances, as computed by an All-Pairs-Shortest

-Path computation. As this goal cannot always be achieved for

arbitrary graphs in 2D or 3D Euclidean spaces, the approach

relies on setting up a spring system in such a way that

minimizing the energy of the system corresponds to

minimizing the difference between the geometric and graph

distances. In this model there are no separate attractive and

repulsive forces between pairs of vertices, but instead if a pair

of vertices is (geometrically) closer/farther than their

corresponding graph distance the vertices repel/attract each

other.

 In this approach a dynamic system is considered in which n

(= |V|) particles are mutually connected by springs. Let p1, p2,

. , pn be the particles in a plane corresponding to the

vertices v1, v2, ... , vn ϵ V respectively. This approach relate the

balanced layout of vertices to the dynamically balanced

spring system. As a result, the degree of imbalance can be

formulated as the total energy of springs, i.e.,

 (1)
 Pleasing layouts can be obtained by decreasing E, then the

best layout is the state with minimum E in this model. The

original length lij of the spring between pi and pj corresponds

to the desirable length between them in the drawing, and is

determined as follows. The distance dij between two vertices

vi and vj in a graph is defined as the length of the shortest paths

between vi and vj. Then the length lij is defined as

li j = L × di j

where L is the desirable length of a single edge in the display

plane. When the display space is restricted, it is a good way to

determine L depending on the diameter (i.e., the distance

between the farthest pair) of a given graph. That is,

where L0 is the length of a side of display square area. The

parameter kij is the strength of the spring between pi and pj ,

and is determined as follows. The expression (1) can be

regarded as the square summation of the differences between

desirable distances and real ones for all pairs of particles.

From this point of view, the differences per unit length is

better to be used in (1). Then, kij is defined as-

where K is a constant. The parameters lij and kij are symmetric,

i.e., lij = lji and kij = kji (i≠ j). In this spring model, the density of

particles does not become large, because every two nodes are

forced to keep certain distance by the tension of a spring. Note

that symmetric graphs correspond to symmetric spring

systems, which result in symmetric layouts by minimizing E.

 Assume, the position of a particle in a plane is expressed by

x and y coordinate values. Let (x1, y1), (x2, y2),... (xn, yn). be the

coordinate variables of particles p1, p2, , pn respectively.

Then, the energy E defined as (1) is rewritten by using these

2n variables as follows.

 (2)

 The purpose is to compute the values of these variables

which minimize E(x1,x2,···.,xn, y1,y2,....yn). (Here after the

parameters of the function E are omitted). It is, however, quite

difficult to compute the minimum, so instead of it a local

minimum is computed. A method is used for computing a

local minimum of E from a certain initial state based on the

Newton-Raphson method. The necessary condition of local

minimum is as follows.

 (3)
 The state satisfying above equation (3) corresponds to the

dynamic state in which the forces of all springs are balanced.

The partial derivatives of (2) by xm and ym are calculated. It

gives 2n simultaneous non-linear equations of (3). But they

cannot be directly solved by using a 2n-dimensional

Newton-Raphson method, because they are not independent

of one another. A approach is adopted here, in which only one

particle pm(xm , ym) is moved to its stable point at a time,

freezing the other particles. That is, viewing E as a function of

only xm and ym , they compute a local minimum of E by using

a two-dimensional Newton-Raphson method. They obtained a

local minimum which satisfies equation (3) iterating this step.

In each step, they choose the particle that has the largest value

of ∆m which is defined as

Starting from which is equal to the current position

(xm, ym), the following step is iterated.

The unknowns and will be computed in further steps .

The iterations terminates when the value of ∆m at

becomes small enough.

 Figure 16. illustrates the process of minimizing E in the

case of a 6-vertex graph. First the particle B is moved (Fig.

16(b)) and next the particle F is moved (Fig. 16(c)). The final

state (Fig. 16(d)) is obtained after 21 moving steps.

 Fig. 16(a) Fig. 16(b)

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-2, Issue-7, July 2015

 122 www.ijeas.org

 Fig. 16(c) Fig. 16(d)

Figure 16. The energy minimization process. Available at [2].

 The advantages of this approach are it is used for

drawing general undirected graphs for human understanding.

It can be widely used in the systems which deal with network

structures. Here, the graph theoretic distance between vertices

in a graph is related to the geometric distance between them in

the drawing. This spring algorithm has many good properties

like; symmetric drawings, a relatively small number of edge

crossings, and almost congruent drawings of isomorphic

graphs. This approach can be easily adapted and extended and

have flexibility due to which can be used in 3D graph

drawing, cluster graph drawing, constrained graph drawing

and dynamic graph drawing. The important thing is it can be

applied on weighted graphs.

 The disadvantage is this algorithm does not guarantee to

compute the true minimum of E. In order to prevent the

energy from converging to a large local minimum, a simple

test is to be added to the algorithm.

The algorithm of Kamada and Kawai [2] is computationally

expensive, requiring an All-Pair-Shortest-Path computation

which can be done in O(|V|
3
) time using the Floyd-Warshall

algorithm or in O(|V|
2
 log |V |+|E||V|) using Johnson‘s

algorithm. It has lot of iterative computations. It can be slow

as the network grows.

 This approach can be used to visualize small and medium

sized undirected social networks, information networks,

technological networks, biological networks etc. It can also be

used in visualize the tree structures and 3D drawings. Most

important is it can be used on weighted networks.

Figure 17. A weighted network. Available at [2].

I. Random Graphs Layout

 The notion of a random graph was first introduced by Erdos

[56]. The theory of random graphs was founded by Erdos and

Renyi [56], [57]. A random graph is a graph generated by

some random procedure. The two standard models for

random graphs are considered here. There are many

(non-equivalent) ways to define random graphs. The simplest,

denoted by Gn,m (or one of several common similar notations),

where n and m are two integers with 0 ≤ m≤ , is obtained

by taking a set of n elements as the set of vertices, for

definiteness we may take the integers 1,........, n, and then

randomly selecting m (by drawing without replacement) of

the possible edges.

 A closely related model, denoted by for example Gn,p,

where 0 ≤ p ≤ 1, is obtained by taking the same vertex set but

now selecting every possible edge with probability p,

independently of all other edges (In particular, p=1/2 gives

the uniform distribution over all (labelled) graphs on n

vertices). The main interest is of anyone is in the case when n,

the number of vertices, is very large, and especially in

asymptotic results when n→∞ and m or p is a given function

of n.

Example for drawing random graphs is given below in Figure.

18:

Figure 18. Evolution of the graph (p grows) G= Gn,p

 The advantage of the Erdos-Renyi model [56], is the

independence of choices for the edges (i.e., each pair of

vertices has its own dice for determining being chosen as an

edge). The computations are easy as the probability of two

independent events is the product of probabilities of two

events. The beauty of random graphs lies in being able to use

relatively few parameters in the model to capture the behavior

of almost all graphs of interest. And finally it is a very fast

approach to draw graphs.

 To model real graphs, there are some obvious difficulties.

For example, the random graph G(n,p) has all degrees very

close to pn if the graph is not so sparse, (i.e., p≥ log n/n). The

distribution of the degrees follows the same bell curve for

every vertex. As we know, many real-world graphs satisfy the

power law which is very different from the degree distribution

of G(n,p). In order to model real-world networks, it is

imperative to consider random graphs with general degree

distribution and, in particular, the power law distribution.

This algorithm is not recommended for automata with many

high-degree vertices and for those with many vertices, as there

is more potential for edge-intersection and vertex overlap

respectively. Still, this algorithm can be useful by generating a

radically new layout each time it is called, and has its uses for

small automata. The other disadvantage of random approach

is that it is not easy to interpret the graph.

 The random graph approach can be used for small and

somewhat medium size graphs. With some modification and

addition of generating function it can be used for real world

networks like companies director's network, actors network,

networks from biomedicine field, collaboration networks,

www linked web pages network, physically connected

network of routers, email network, citation network, sexual

networks etc.

Analysis of Various Graph Layout Approaches Used in GUESS Software

 123 www.ijeas.org

Figure 19. shows a random graph and its visual complexity

problem if number of nodes and edges are too many.

Figure 19. Showing a random graph & its visual complexity

 problem for graphs having large number of nodes and

 edges .

J. Multidimensional Scaling Layout

 The goal of an MDS analysis is to find a spatial

configuration of objects, when all that is known, is some

measure of their general (dis)similarity. The spatial

configuration should provide some insight into how the

subject(s) evaluate the stimuli in terms of a (small) number of

potentially unknown dimensions. Once the proximities are

derived the data collection is concluded, and the MDS

solution has to be determined using a computer program.

 The basic approaches of MDS are Classical MDS and

Nonmetric MDS. Classical MDS assumes that the data, the

proximity matrix, say, display metric properties, like

distances as measured from a map. Thus, the distances in a

classical MDS space preserve the intervals and ratios between

the proximities as good as possible. While, Nonmetric MDS

assumes that the order of the proximities is meaningful. The

order of the distances in a nonmetric MDS configuration

reflects the order of the proximities as good as possible while

interval and ratio information is of no relevance.

Classical MDS

 Consider the following problem: looking at a map showing

a number of cities, one is interested in the distances between

them. These distances are easily obtained by measuring them

using a ruler. Apart from that, a mathematical solution is

available: knowing the coordinates x and y, the Euclidean

distance between two cities a and b is defined by

Now consider the inverse problem: having only the distances,

is it possible to obtain the map?

 Classical MDS, which was first introduced by Torgerson

[53], addresses this problem. It assumes the distances to be

Euclidean. Euclidean distances are usually the first choice for

an MDS space. There exist, however, a number of non-

Euclidean distance measures, which are limited to very

specific research questions In many applications of MDS the

data are not distances as measured from a map, but rather

proximity data. When applying classical MDS to proximities

it is assumed that the proximities behave like real measured

distances. This might hold e. g. for data that are derived from

correlation matrices, but rarely for direct dissimilarity ratings.

 The advantage of classical MDS is that it provides an

analytical solution, requiring no iterative procedures.

Steps of a Classical MDS algorithm

The classical MDS algorithm rests on the fact that the

coordinate matrix X can be derived by eigenvalue

decomposition from the scalar product matrix B = XX'.The

problem of constructing B from the proximity matrix P is

solved by multiplying the squared proximities with the matrix

J=I - n
-1

 11'. This procedure is called double centering. The

following steps summarize the algorithm of classical MDS:

1. Set up the matrix of squared proximities P
(2)

 = [p
2
].

2. Apply the double centering: B = - J P
(2)

J using the

 matrix J=I - n
-1

 11', where n is the number of objects.

3. Extract the m largest positive eigenvalues λ1..... λm of B and

 the corresponding m eigenvectors e1 em.

4. A m-dimensional spatial configuration of the n objects is

 derived from the coordinate matrix where

 Em is the matrix of m eigenvectors and ∆m is the diagonal

 matrix of m eigenvalues of B, respectively.

Take the example of cities in Denmark. Assume that we have

measured the distances between Kobenhavn (cph), Arhus

(aar), Odense (ode) and Aalborg (aal) on a map. Therefore,

the proximity matrix (showing the distances in millimeters)

might look like as Fig. 20:

Figure 20. Proximity matrix

After applying the steps of algorithm following graph will be

obtained as MDS solution.

Figure 21. Shows a graphical representation of the MDS solution.

 Remember that this "map" is derived only from the

 distances between the points. Note that the dimensions

 cannot directly be identified with "North-South" and

 "East-West" without further rotation.

 The advantage of classical MDS is that it provides an

analytical solution, requiring no iterative procedures. It finds

low-dimension projection that respects distances. Classical

MDS is optimal for euclidean input data. It is still optimal, if

matrix B has non-negative eigenvalues (position

semi-definite) and it is very fast layout technique .

 The disadvantage of classical MDS is slow, particularly for

large data sets and the reasons for this will become apparent in

its Computation process. Second, there is no clear guarantees

for distances other than euclidean distances. It has no

guarantees if matrix B has negative eigenvalues. There are

two difficulties with increasing the number of dimensions.

The first is that even 3 dimensions are difficult to display on

paper and are significantly more difficult to comprehend.

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-2, Issue-7, July 2015

 124 www.ijeas.org

Four or more dimensions render MDS virtually useless as a

method of making complex data more accessible to the human

mind.

 MDS applications include scientific visualization and data

mining in fields such as cognitive science, information

science, psychophysics, psychometrics, marketing and

ecology. In marketing, MDS is a statistical technique for

taking the preferences and perceptions of respondents and

representing them on a visual grid, called perceptual maps. By

mapping multiple attributes and multiple brands at the same

time, a greater understanding of the marketplace and of

consumers' perceptions can be achieved, as compared with a

basic two attribute perceptual map. MDS is becoming a

popular method used in sequence clustering and visualization.

In bioinformatics, MDS is used to reduce the dimensionality

by giving the dissimilarity scores from each pair of sequences.

These disimilarity scores are usually calculated using

Sequence Alignment. By mapping each sequence from the

high dimensional space to a visually acceptable space (such as

2D/3D space), the correlations between each sequence cluster

can be observed easily.

Nonmetric MDS

The assumption that proximities behave like distances might

be too restrictive, when it comes to employing MDS for

exploring the perceptual space of human subjects. In order to

overcome this problem, Shepard [37],[38] and Kruskal [23]

developed a method known as nonmetric multidimensional

scaling.

 In nonmetric MDS, only the ordinal information in the

proximities is used for constructing the spatial configuration.

A monotonic transformation of the proximities is calculated,

which yields scaled proximities. Optimally scaled proximities

are sometimes referred to as disparities = f(p). The

problem of nonmetric MDS is how to find a configuration of

points that minimizes the squared differences between the

optimally scaled proximities and the distances between the

points. More formally, let p denote the vector of proximities

(i. e. the upper or lower triangle of the proximity matrix), f(p)

a monotonic transformation of p, and d the point distances;

then coordinates have to be found, that minimize the so-called

stress

MDS programs automatically minimize stress in order to

obtain the MDS solution; there exist, however, many

(slightly) different versions of stress.

Judging the goodness of fit

The amount of stress may also be used for judging the

goodness of fit of an MDS solution: a small stress value

indicates a good fitting solution, whereas a high value

indicates a bad fit. Stress decreases as the number of

dimensions increases. Thus, a two-dimensional solution

always has more stress than a three-dimensional one. Since

the absolute amount of stress gives only a vague indication of

the goodness of fit, there are two additional techniques

commonly used for judging the adequacy of an MDS solution:

the Scree plot and the Shepard diagram

 In a scree plot, the amount of stress is plotted against the

number of dimensions. Since stress decreases monotonically

with increasing dimensionality, one is looking for the lowest

number of dimensions with acceptable stress. An "elbow" in

the scree plot indicates, that more dimensions would yield

only a minor improvement in terms of stress. Thus, the best

fitting MDS model has as many dimensions as the number of

dimensions at the elbow in the scree plot.

 The Shepard diagram displays the relationship between the

proximities and the distances of the point configuration. Less

spread in this diagram implies a good fit. In nonmetric MDS,

the ideal location for the points in a Shepard diagram is a

monotonically increasing line describing the so-called

disparities, the optimally scaled proximities. In an MDS

solution that fits well the points in the scree plot are close to

this monotonically increasing line.

 Figure 22. Shows a paradigmatic scree plot and a Shepard

diagram. The elbow in the scree plot suggests a three-

dimensional MDS space, while the little amount of spread in

the Shepard diagram indicates a rather good fit of the solution.

 Fig. 22(a) Fig. 22(b)

Figure 22. Fig. 22(a) Shows a Scree plot displaying an elbow

 at three dimensions.

 Fig. 22(b) Shows a Shepard diagram with the

 optimally scaled proximities.

Steps of nonmetric MDS algorithm

The core of a nonmetric MDS algorithm is a twofold

optimization process. First the optimal monotonic

transformation of the proximities has to be found. Secondly,

the points of a configuration have to be optimally arranged, so

that their distances match the scaled proximities as closely as

possible. The basic steps in a nonmetric MDS algorithm are:

1. Find a random configuration of points, e. g. by sampling

 from a normal distribution.

2. Calculate the distances d between the points.

3. Find the optimal monotonic transformation of the

 proximities, in order to obtain optimally scaled data

 f(p).

4. Minimize the stress between the optimally scaled data

 and the distances by finding a new configuration of

 points.

5. Compare the stress to some criterion. If the stress is

 small enough then exit the algorithm else return to step

 2.

 The advantage of nonmeteric MDS are, it fulfills a clear

objective without many assumptions that is minimizing

stress. Its results don‘t change with rescaling or monotonic

variable transformation. It works even if you only have rank

information.

 The disadvantages of nonmetric MDS are,first, MDS is

slow, particularly for large data sets and the reasons for this

https://en.wikipedia.org/wiki/Scientific_visualisation
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Cognitive_science
https://en.wikipedia.org/wiki/Information_science
https://en.wikipedia.org/wiki/Information_science
https://en.wikipedia.org/wiki/Psychophysics
https://en.wikipedia.org/wiki/Psychometrics
https://en.wikipedia.org/wiki/Marketing
https://en.wikipedia.org/wiki/Ecology
https://en.wikipedia.org/wiki/Marketing
https://en.wikipedia.org/wiki/Perceptual_mapping
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Sequence_alignment

Analysis of Various Graph Layout Approaches Used in GUESS Software

 125 www.ijeas.org

will become apparent in its iterative computational steps.

Second, because MDS is a numerical optimization technique,

it can fail to find the true best solution because it can become

stuck on local minima, solutions that are not the best solution

but that are better than all nearby solutions. Third, normally,

MDS is used to provide a visual representation of a complex

set of relationships that can be scanned at a glance. Since

maps on paper are two dimensional objects, this translates

technically to finding an optimal configuration of points in

2-dimensional space. However, the best possible

configuration in two dimensions may be a very poor, highly

distorted, representation of your data. If so, this will be

reflected in a high stress value. Fourth, there are two

difficulties with increasing the number of dimensions. The

first is that even 3 dimensions are difficult to display on paper

and are significantly more difficult to comprehend. Four or

more dimensions render MDS virtually useless as a method of

making complex data more accessible to the human mind. The

second problem is that with increasing dimensions, you must

estimate an increasing number of parameters to obtain a

decreasing improvement in stress. The result is model of the

data that is nearly as complex as the data itself. Fifth, in

nonmetric MDS usually only local (not global) optimum

found.

 Non-metric MDS has been used extensively in the

psychometrics and psychophysics communities to embed

similarity and dissimilarity ratings derived from a variety of

sources. MDS has been used extensively in geostatistics, for

modeling the spatial variability of the patterns of an image

and natural language processing, for modeling the semantic

and affective relatedness of natural language concepts.MDS

is also used in marketing, bioinformatics and ecology fields.

MDS can be used for mapping computer usage data,

mathematical graphs, social network graphs and

reconstruction of molecules in nano-technology.

V. CONCLUSION AND FUTURE SCOPE

 Graph Drawing is concerned with the geometric

representation of graphs and networks and is motivated by

those applications where it is crucial to visualize structural

information as graphs. Since graph drawing methods form the

algorithmic core of network visualization, that is why

bridging the gap between theoretical advances and

implemented solutions is an important aspect. This paper

presents an overview of many possible types of graph

visualization approaches and their implementation details. Its

primal goal is, to help a user, with some relational data on his

hands and a need to visualizing it, with the choice of what to

use, and what is out there that can be used. However, it can be

also viewed as historical overview of graph drawing

algorithms, and its evolution and will be quite helpful in the

future development of related algorithms and technologies.

 The field of graph drawing and visualization has a broad

scope like development of tools and systems for graph

drawing, development of user interfaces for viewing graphs,

interactive exploration of large graphs, presentation of

dynamic graphs and animation of graphs, applications of

graph drawing to areas such as software visualization, user

interface design and database query formulation. The field of

graph drawing has mainly focused on the structure of graphs,

whereas practitioners of information visualization are more

concerned with embedding information, often multivariate,

into the nodes and the links. In future we would like to work

on how can we merge the best practices of both fields?

 Multivariate networks are large and complex and their

complexity will increase in the future. Thus, not all problems

can be solved in the short term. There already exist a number

of technical approaches, algorithms, and methods to

interactively visualize multivariate networks. In future we

would also like to work on which (approaches) ones are

suitable for solving specific tasks in our applications areas,

what is their potential, and what are their limitations. By

identifying the range of approaches that do exist, we see the

potential for new, innovative visualization ideas.

REFERENCES

[1] Colin Ware, Helen Purchase, Linda Colpoys, Matthew McGill,

"Cognitive Measurements of Graph Aesthetics," Information

Visualization, 1, Issue 2, 2002, pp. 103-110.

[2] Tomihisa Kamada, Satoru Kawai, "An Algorithm for Drawing General

Undirected Graphs," Information Processing Letters, 31(1), 1989, pp.

7-15.

[3] E. Adar, "GUESS: A Language and Interface for Graph Exploration,"

Conference on Human Factors in Computing Systems.

http://www.graphexploration.org

[4] V.Batagelj, A. Mrvar, ―Pajek – Program for Large Analysis,‖

Connections, 21, 1998, pp. 47-47.

[5] E.R. Gansner, S.C. North, ―An open visualization system and its

applications to software engineering,‖ Software – Practice and

Experience, 30(11), 2000, pp. 1203-1233.

[6] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G.

Tollis, "Graph Drawing: Algorithms for the Visualization of Graphs,"

Prentice Hall, Upper Saddle River, New Jersey, 1999.

[7] G. Di Battista, P. Eades, R. Tamassia and I. Tollis, "Algorithms for

Drawing Graphs: An Annotated Bibliography," Computational

Geometry: Theory and Applications, 4(5), 1994, pp. 235-282.

[8] G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, F. Vargiu

and L. Vismara, "An Experimental Comparison of Four Graph

Drawing Algorithms," Computational Geometry: Theory and

Applications, 7(5-6), 1997, pp.303-26.

[9] R.F. Cohen, G. Di Battista, R. Tamassia, I. G. Tollis, P. Bertolazzi,

"A framework for dynamic graph drawing," In Proceedings of the 8th

Annual Symposium on Computational Geometry (SCG ’92), 1992, pp.

261–270.

[10] Peter Eades, "Drawing free trees," Bulletin of the Institute of

Combinatorics and its Applications, 5, 1992, pp. 10-36.

[11] P. Eades, "A heuristic for graph drawing," Congressus Numerantium,

42, 1984, pp. 149–160.

[12] Guy Melancon , Ivan Herman, "Circular drawings of rooted trees,"

Technical report, Amsterdam, The Netherlands, 1998.

[13] Soon Tee Teoh, Kwan-Liu Ma, "Rings: A technique for visualizing

large hierarchies," In GD '02: Revised Papers from the 10th

International Symposium on Graph Drawing, London, UK, Springer-

Verlag. ISBN 3-540-00158-1, 2002, pp. 268-275.

[14] Ka-Ping Yee, Danyel Fisher, Rachna Dhamija, and Marti A. Hearst.

 "Animated exploration of dynamic graphs with radial layout," In

 Proceedings of the IEEE Symposium on Information

Visualization, 2001, pp. 43-50.

[15] U. Dogrusoz, B. Madden, P. Madden, "Circular layout in the graph

layout toolkit," In Proc. GD ‘96, LNCS 1190, 1997, pp. 92–100,.

[16] M. Kaufmann, R. Wiese, "Maintaining the Mental Map for Circular

Drawings," In Proc. GD 2002, LNCS 2528, 2002, pp. 12–22.

[17] E. Makinen, "On Circular Layouts," In Intl. Jrnl of Computer

Mathematics, 24,1988, pp. 29–37.

[18] F. P. Preparata, M. I. Shamos, "Computational Geometry: An Intro-

duction," Springer-Verlag, New York, 1985.

[19] J. M. Six, I. G. Tollis, "A framework and algorithms for circular

drawings of graphs," Jrnl. of Discrete Algorithms, 4(1), 2006, pp. 25-

50.

[20] Ron Davidson, David Harel, "Drawing graphs nicely using simulated

annealing," ACM Transactions on Graphics, 15(4), 1996, pp.

301–331.

https://en.wikipedia.org/wiki/Geostatistics
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Marketing
https://en.wikipedia.org/wiki/Ecology

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-2, Issue-7, July 2015

 126 www.ijeas.org

[21] T. M. Fruchterman, E. M. Reingold, "Graph drawing by force-directed

placement," Software-Practice and Experience, 21(11), 1991, pp.

1129- 1164.

[22] Benjamin Finkel, Roberto Tamassia, "Curvilinear Graph Drawing

Using the Force-Directed Method," In Proc. 12th Int. Symp. on Graph

Drawing (GD 2004), 2005, pp. 448–453.

[23] J. B. Kruskal, "Multidimensional scaling by optimizing goodness of fit

to a nonmetric hypothesis," Psychometrika, 29, 1964, pp. 1–27.

[24] William T. Tutte, " How to draw a graph," Proc. London Math.

Society,

13(52), 1963, pp. 743–768.

[25] T. Kamada, S. Kawai,"‗Automatic display of network structures for

human understanding," Technical Report 88-007, Department of

Information Science, Tokyo University, February, 1988.

[26] A. Frick, A. Ludwig, H. Mehldau, "A fast adaptive layout algorithm for

undirected graphs," In R. Tamassia and I. G. Tollis, editors, Graph

Drawing (Proc. GD '94), volume 894 of Lecture Notes in Computer

Science, Springer-Verlag, 1995, pp. 388--403.

[27] W. S. Cleveland, R. McGill, "Graphical perception: Theory,

experimentation, and application to the development of graphical

methods," Journal of the American Statistical Association, 79(387)

1984, pp. 531-554.

[28] S.G. Eick, " Aspects of network visualization," IEEE Computer

Graphics and Applications, 16(2), 1996, pp. 69-72.

[29] E.R. Gansner, S.C. North, ―Improved force-directed layouts,"

Proceedings of Graph Drawing ’98, LNCS 1547, Springer-Verlag,

1998, pp. 364-373.

[30] J.B. Kruskal, M. Wish, "Multidimensional Scaling," volume 07-011 of

Sage University Paper series on Quantitative Applications in the

Social Sciences. Sage Publications, 1978.

[31] X. Mendonca, P. Eades, "Learning aesthetics for visualization," In

Anais do XX Seminario Integrado de Software e Hardware,

Florianopolis, Brazil, 1993, pp. 76-88.

[32] H.C. Purchase, R.F. Cohen, M. James,"An experimental study

of the basis for graph drawing algorithms," ACM Journal of

Experimental Algorithmics, 2(4), 1997.

[33] W.T. Tutte, "How to draw a graph," Proceedings of the London

Mathematical Society, Third Series, 13, 1963, pp. 743-768.

[34] I. Borg, P. Groenen, " Modern Multidimensional Scaling: Theory and

Applications," 2nd edition, Springer Verlag, 2005.

[35] T.F. Cox, M.A. Cox, "Multidimensional Scaling," Chapman & Hall/

CRC, 2000.

[36] J. B. Kruskal, "Nonmetric multidimensional scaling: A numerical

method," Psychometrika, 29, 1964, pp. 115–129.

[37] R.N. Shepard, " The analysis of proximities: Multidimensional scaling

with an unknown distance function. I," Psychometrika, 27(2), 1962,

pp. 125–140.

[38] R.N. Shepard, "The analysis of proximities: Multidimensional scaling

with an unknown distance function. II, " Psychometrika, 27, 1962, pp.

219–246.

[39] F.J. Brandenburg, M. Himsolt, C. Rohrer, ―An Experimental

Comparison of Force-Directed and Randomized Graph Drawing

Algorithms, ‖ Proceedings of Graph Drawing ’95, LNCS 1027,

Springer Verlag, 1995, pp. 76–87.

[40] R. Hadany, D. Harel, ―A Multi-Scale Method for Drawing Graphs

Nicely, ‖ Discrete Applied Mathematics 113, 2001, pp. 3-21.

[41] D. Harel, Y. Koren, ―A Fast Multi-Scale Method for Drawing Large

Graphs,‖ Journal of Graph Algorithms and Applications 6, 200), pp.

179–202.

[42] D. Harel and Y. Koren, ―Graph Drawing by High-Dimensional

Embedding,‖ Proceedings of Graph Drawing 2002, LNCS 2528,

Springer-Verlag, 2002, pp. 207–219.

[43] M. Kaufmann, D. Wagner (Eds.), "Drawing Graphs: Methods and

Models," LNCS 2025, Springer-Verlag, 2001.

[44] C. Walshaw, ―A Multilevel Algorithm for Force-Directed Graph

Drawing,‖ Proceedings 8th Graph Drawing (GD‘00), LNCS 1984,

Springer-Verlag, 2000, pp. 171–182.

[45] J.D. Carroll, P. Arabie, "Multidimensional scaling," M. R. Rosenzweig

and L.W. Porter, eds. Annual Review of Psychology, 31, 1980, pp.

607–649.

[46] M.L. Davison, "Multidimensional scaling." New York, John Wiley &

Sons, 1983

[47] P.E. Green, F.J. Carmone, "Multidimensional scaling and related

techniques," Boston, Allyn and Bacon, 1970,

[48] P.E. Green, V.R. Rao, "Applied multidimensional scaling," New

York, Holt, Rinehart and Winston, 1972.

[49] J.C. Lingoes, E.E. Roskam, "A mathematical and empirical study of

two multidimensional scaling algorithms," Psychometrika Monograph

Supplement, 19, 1973.

[50] S.S. Schiffman, M.L. Reynolds, F.W. Young, "Introduction to

multidimensional scaling: Theory, methods, and applications," New

York: Academic Press, 1981

[51] R.N. Shepard, A.K. Romney, S. Nerlove, "Multidimensional scaling:

Theory and application in the behavioral sciences," New York,

Academic Press, 1972.

[52] W.S. Torgerson, "Theory and methods of scaling," New York, John

Wiley & Sons, 1958.

[53] W.S. Torgerson, "Multidimensional scaling: I- Theory and method.

Psychometrika, 17,1952, pp. 401-419.

[54] E. R. Gansner, Y. Koren, S. North, "Graph drawing by stress

majorization," In Proceedings of the 11th International Symposium in

Graph Drawing (GD'03), volume 2912 , Springer LNCS, 2004, pp.

239-250.

[55] B. Bollobas, "Random Graphs," Academic Press, New York, 1985.

[56] P. Erdos, A. Renyi, "On random graphs," Publicationes Mathematicae

6, 1959, pp. 290-297.

[57] P. Erdos, A. Renyi, "On the evolution of random graphs," Publications

of the Mathematical Institute of the Hungarian Academy of Sciences 5,

1960, pp. 17-61.

[58] S. Janson, T. Luczak, A. Rucinski, "Random Graphs," John Wiley,

New York, 1999.

[59] Ulrik Brandes, "Drawing on Physical Analogies-Drawing Graphs,"

LNCS 2025, 2001, pp. 71-86.

[60] J.S. Tilford, "Tree Drawing Algorithms, " Technical Report

UIUCDCS-R-81-1055, Department of Computer Science, University

of Illinois at Urbana-Champaign, IL, 1981.

Himanshu Sharma recieved his B.E degree in computer

science from University of Rajasthan in year 2006. He is

pursuing M.Tech presently. His main research interests

includes data mining, network analysis and knowledge

engineering.

Vishal Srivastava recieved his B.Tech & M.Tech in

degree computer science from RGPV college in 2004

and 2007 respectively and pursuing his PhD presently.

He is working as professor in Arya College of

Engineering and Information Technology, Jaipur,

Rajasthan. He is member of CSI, IAE, UACEE, SCIEI,

IJCTT, IJATER. He is also editorial board member and

reviewer in IJACR, IJRET, IJCST, IJCT, IJAERD,

IJATEE etc in area of CS and IT. His area of interest includes Networking

and Data Mining. He has published 77 International papers and 24 National

papers in international journals, conferences and national conferences. He

also get grants from DST, Government of Rajasthan for his R&D and

projects like SAMADHAN, Vaccination schedule alert system on mobile,

Petition signing an android application.

