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Abstract— One challenge in node-link diagrams is how to 

efficiently provide a node placement or layout that will yield a 

meaningful graph visualization. For simple structures, the 

system needs only a set of aesthetic choices to provide a useful 

graph—sometimes even a hand-drawn visualization could 

suffice. But for large, complex structures, effective layouts are 

harder to create, which motivates continual interest in graph 

layout algorithms as an integral part of visualizing complex 

networks. Although most traditional work involves developing 

more efficient layout methods for static graphs, more recent 

efforts have also focused on finding effective ways to generate 

dynamic graphs of time-varying networks.  

 This paper discusses the various aesthetic criteria's which 

improve the readability of graphs and helps in how to choose 

proper layout algorithm for specific data to make the 

visualization better. This paper also discusses the different 

graph layout approaches which are used as the basis for 

developing many other new and improved graph layout 

algorithms helping in better visualization of graphs. Some 

easy-to-program network layout approaches are discussed here, 

with details given for implementing each one. This paper is 

mainly focused on the basic graph layout approaches which are 

used in "GUESS"  the graph visualization and exploration 

software. This paper is also intended to beginners who are 

interested in programming their own network visualizations, or 

for those curious about some of the basic mechanics of graph 

visualization.  

 

Index Terms— Graph Visualization, Graph Layouts, Layout 

algorithms, GUESS. 

I. INTRODUCTION 

 Graph layout is concerned with placing a set of vertices and 

edges in the drawing in such a way that the reader of a graph 

can easily identify and understand the contents of the graph. 

When trying to place the vertices and edges of the graph, 

current graph layout methods aim to place the parts of the 

graph according to various aesthetic criteria to improve 

readability. A layout is a "good'' layout if the layout achieves 

a majority of the aesthetic criteria. These aesthetics have been 

determined by research into the cognitive efforts of the human 

mind. Work by Ware et al. in [1] have tried to collate some 

important aesthetic criteria when laying out a graph. These 

include: 1) Minimal edge crossings, 2) Minimal edge bends, 

3) Preservation of symmetry, 4) Nodes and edges should be 

evenly distributed in the drawing area, 5) Long edges should 

be avoided and deviation in edge lengths should be small, 6) 

Connected vertices should be close to each other, but the 
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nodes shouldn't overlap each other or with edges in the layout, 

7) The area used for drawing should be as small as possible, 8) 

The aspect ratio of drawing area is also be important, 9) 

Conform to the frame. 
 

 The aesthetic criteria mentioned are applied to a layout 

based upon various characteristics of a graph such as 

symmetry, hierarchical placement, etc. However there has not 

yet been one algorithm that has determined a set of aesthetics 

for graphs in all application domains. For example, a user may 

want a layout that preserves the symmetrical nature of a graph 

as shown in Fig. 1(a), however an algorithm that is more 

concerned with minimizing the number of edge crossings may 

layout the graph like that in Fig. 1(b) . The graph in Fig. 1(b) 

does not make the symmetry obvious to the reader, contrary to 

the wishes of the user. This is where the non-interactivity of 

graph layout algorithms can seriously detract from the quality 

and presentation of a final layout, and ultimately from what 

the users wants.  

 

                                       
                   Fig. 1(a)                                               Fig. 1(b) 

Figure 1.  A graph that is symmetrical (Fig. 1(a)), and the same   

      graph with minimized edge crossings (Fig.1(b)).    

      Available at [2]. 

 

 Trying to achieve all these aesthetic criteria is considered  

to be difficult. Moreover, if you want to meet several criteria 

at the same time, an optimal solution simply may not exist 

with respect to each individual criteria because many of the 

criteria are mutually contradictory. Time-consuming trade- 

offs may be necessary. In addition, it is not a trivial task to 

assign weights to each criteria. Multicriteria optimization is, 

in most cases, too complex to implement and much too time- 

consuming. For these reasons, layout algorithms are often 

based on heuristics and may provide less than optimal 

solutions with respect to one or more of the criteria. 

Fortunately, in practical terms, the layout algorithms will still 

often provide reasonably readable drawings. 
 

 Various algorithms have been devised, and integrated into 

static layout tools, to calculate the best position of the 

vertices, and the routing of the edges in order to produce a 

readable graph, with attempts to achieve the aforementioned 

aesthetic goals. Some of the popular approaches for the graph 

layouts present in the GUESS [3]software are discussed in 

this paper. GUESS is a novel system for graph exploration 

that combines an interpreted language with a graphical front 

end that allows researchers to rapidly prototype and deploy 

new visualizations. GUESS also contains a novel, interactive 

interpreter that connects the language and interface in a way 
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that facilities exploratory visualization tasks. GUESS use the 

Gython language for this purpose. The GUESS system is an 

attempt to combine analysis and visualization into one 

package that supports Exploratory Data Analysis (EDA) for 

graphs. It thus distinguishes itself from solutions that require 

one system to perform analysis, such as partitioning (e.g. 

using Analytic Technologies‘ UCINET), followed by a 

different program for rendering (e.g. Pajek [4] or GraphViz 

[5]). Interactive exploration is difficult when a user is forced 

to go back and forth between the analysis and the 

visualization packages. Moreover , GUESS software is easily 

available for download on internet and can be used free of 

cost. 

II. RELATED WORK ON GRAPH LAYOUT AND LAYOUT 

ALGORITHMS  

 A lot of work has been done in the area of graph drawing, 

graph layouts and graph visualizations which includes the 

topics like aesthetics of graph drawing, various types of graph 

layout models for displaying of different types of graphs, 

generation of graphs, transition of graphs to a new state, how 

to visualize the graphs better, static and dynamic visualization 

of graphs etc. Some of the researchers who works on the 

above topics and related to the graph layout approaches 

discussed in this paper are as given. 

 
 

 Peter Eades with Giuseppe Di Battista, Roberto Tamassia, 

and Ioannis G. Tollis [6],[7] worked on Graph drawing and 

developed  various algorithms for drawing graphs  and 

algorithms for the visualization of graphs. In their work they 

discussed lots of the concept about the better graph drawing 

and visualization approaches. They also work on 3D drawings 

of graphs. P. Eades [11] has also worked on spring 

algorithms, maintenance of the "mental map" in dynamically 

changing drawings, heuristics for reducing the number of 

edge crossings in layered graph drawings, and visual display 

of clustering information in graphs.  He is the first who use 

the concept of the combination of attractive forces on adjacent 

vertices, and repulsive forces on all vertices in spring 

algorithms. This concept still remains the base of various 

spring embedded algorithms with further continuous 

improvements. Kamada and Kawai[2], proposed a variation 

to Eades' Spring-algorithm. Their algorithm uses in its 

computations the desirable "geometric" (Euclidean) distance 

between two vertices in the drawing as the "graph theoretic" 

distance between them in the corresponding graph. T. M.  

Fruchterman and E. M. Reingold [21], also worked on graph 

drawing by force-directed placement by using the concept of 

temperature and cooling.  They  do not have the explicit 

concept of energy, and hence could not detect a stopping 

condition, they simply used 50 iterations every time. Going 

back to 1963, the graph drawing algorithm of Tutte [24], is 

one of the first force-directed graph drawing methods based 

on barycentric representation. R. davidson and D. Harel [20], 

worked on drawing nice looking undirected straight line 

graphs using simulated annealing. Arne Frick, Andreas 

Ludwig, Heiko Mehldau [26], proposed a fast adaptive layout 

algorithm for undirected graphs named as GEM. This 

algorithm include the concept of a local temperature,the 

attraction of vertices towards their barycenter and the 

detection of oscillations and rotations. 

 J. M. Six and I. G. Tollis [19], worked on the framework 

for circular drawings of networks  and circular drawings of 

biconnected Graphs, and also developed a visualization tool 

named Vistool. Peter Eades [6],[7] discussed the concept and 

algorithms of radial layout for better space utilization.  

Ka-Ping Yee, Danyel Fisher, Rachna Dhamija, and Marti A. 

Hearst [14], worked on animated exploration of dynamic 

graphs with radial layouts. Classical MDS, was first 

introduced by W.S. Torgerson [53]. Further works are carried 

out by J. B. Kruskal [30],[36] who discussed the concept of 

classical, metric and nonmetric multidimensional scaling. 

R.N. Shepard [37],[38],[51]  analyses the proximities in 

multidimensional scaling with an unknown distance function. 

I. Borg and P. Groenen [34], worked on the theory and 

applications of modern multidimensional scaling.             B. 

Bollobas [55], worked on concept of random graphs. The 

systematic study of random graphs was started by P. Erdos 

and A. Renyi [56]. They discussed on the evolution of random 

graphs [57]. S. Janson, T. Luczak, A. Rucinski [58], also 

worked on random graphs. They give various algorithms, 

theorems, functions and other concepts about random graphs. 

III. PRESENT WORK: ANALYSIS OF DIFFERENT GRAPH 

LAYOUT APPROACHES PRESENT IN GUESS. 
 

 Graph or network-like structures are among the most 

commonly used types of visual representations. Automatic 

layout of graphs plays an important role in many applications 

like, Visual Programming, Software Engineering (e.g. Flow- 

Charts, UML, Dependency visualization, Repository 

Structures), Engineering (e.g. Circuit Diagrams, Molecular 

Structures, Chemical Formulas), Sciences (e.g. Genome 

Diagrams) and currently a particularly hot-topic, Web- 

Visualization. Almost always when relational data that has 

been obtained as the result of an automated operation such as 

a database or repository computation, a web-crawl or any 

other kind of computation, it has to be visualized, we are 

facing the problem of automatic graph layout. 
 

 In this paper, some of the basic graph layout approaches, 

their features, advantages and drawbacks are discussed. The 

research in this paper gives an overall analysis of the present 

visualization techniques, which is vital to the future 

development of related algorithms and technologies.  

IV. DIFFERENT GRAPH LAYOUT APPROACHES IN GUESS 
 

 The approaches discussed here are basis of graph drawing 

and is used in many graph visualization tools. This paper is 

mainly focused on the basic graph layout approaches which 

are used in "GUESS"  the graph visualization and exploration 

software. 

A. Circular Layout Approach (Drawing on a single    

  embedding circle) 
 

 A circular drawing of a graph (see Fig. 2 for an example) is 

a visualization of a graph with the following characteristics: 
 

1) The graph is partitioned into clusters, 

2) The nodes of each cluster are placed onto the         

   circumference of an embedding circle, 

3) Each edge is drawn as a straight line, and 

4) A node cannot be occluded by another node or by an  

  edge. 
 

https://en.wikipedia.org/wiki/Roberto_Tamassia
https://en.wikipedia.org/wiki/Force-based_algorithms_(graph_drawing)
https://en.wikipedia.org/wiki/Force-based_algorithms_(graph_drawing)
https://en.wikipedia.org/wiki/Crossing_number_(graph_theory)
https://en.wikipedia.org/wiki/Crossing_number_(graph_theory)
https://en.wikipedia.org/wiki/Layered_graph_drawing
https://en.wikipedia.org/wiki/Cluster_analysis
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      Fig. 2(a)                              Fig. 2(b) 
 

Figure 2.  A graph with arbitrary coordinates for the nodes (Fig.  

      2(a))  and a possible circular drawing of the same graph     

      (Fig. 2(b)). Available at [19]. 

 
 Simple circular layout is based upon the various parameters 

to be considered at the time of layouting. The parameters like 

ordering of the nodes decides the crossing of edges in the 

circle, the size of every node decides the radius and 

circumference of a circle. The distance between the adjacent 

nodes should be symmetric. These all parameters are 
handled by only tweaking the following calculations for every 

node as:- 
 

LaidOutX = CenterX + Radius * cosine(Angle). 

LaidOutY = CenterY + Radius * sine(Angle). 
 

 To shift center of any cluster you need to modify the center 

coordinates in the above models. Adjusting of the spreading 

between the nodes will be added by incrementing the radius in 

the above models. Next node will be placed at a deviation of 

angle used in the above models. In this way tweaking is 

performed in the circular layout by modifying the above 

mathematical models. 

 The circular layout is mainly used for small-medium sized 

graphs data analysis and in the applications where that 

application requires the visualization of information having 

more emphasis on the aesthetics of drawing. In general, these 

layouts can provide a compact presentation, focusing on 

individual nodes and edges. Additionally, well-designed 

circular layouts sometimes reveal global properties of the 

graph such as symmetries and patterns of collective behavior.  

Other advantage of a circular layout which can be seen in 

some of these applications, such as bioinformatics or social 

network visualization, is its neutrality by placing all vertices 

at equal distances from each other and from the center of the 

drawing, none is given a privileged position, countering the 

tendency of viewers to perceive more centrally located nodes 

as being more important 

 These circular layouts have some limitation and problems. 

An inherent problem with circular layouts is that the rigid 

constraint on node placement often gives rise to long edges 

and an overall dense drawing. Circular layouts shows 

symmetric property, this strong regularity can also obscure 

other information as these drawings can be very dense, and 

following paths on them can be difficult. In these layouts, as 

the nodes need to arranged on the circumference, it restricts 

the area for the nodes to spread. This may incur in crossing 

between the edges and hence we cannot minimize the 

crossings beyond a certain extent. The ordering of the nodes is 

also a critical dynamic problem which needs to solve in the 

circular layout. Hence to resolve this problem, the topological 

ordering with respect degree of a nodes can be used . This 

ordering will select the highest degree node first and will 

place all adjacent node according to the next immediate node 

and applies the circle to all nodes in the ordering list. 

Calculation of radius for the circle is also a difficult problem 

considering the size parameters of the node which is variable 

for every node entity in the graph. Boundaries of clusters need 

to be calculated considering the size parameters of the graph 

entities. 

 The use of circular layouts are a good fit for 

communications network topologies such as star or ring 

networks, and for the cyclic parts of metabolic networks. 
 

B.  Improved Circular Layout Approach  
 

 An inherent issue with circular layouts is that the rigid 

restriction on node placement often gives rise to long edges 

and an overall dense drawing. In improved circular layouts,  

three independent, complementary techniques are used for 

lowering the density and improving the readability of circular 

layouts.  

1) First technique, Places the nodes on the circle such that 

edge lengths are reduced. This is accomplished with a  new 

algorithm.   

2)  Second technique,  Enhances the circular drawing style by 

allowing some of the edges to be routed around the  exterior 

of the circle. This is accomplished with an  algorithm for 

optimally selecting such a set of     externally  routed 

edges.  External routing can be very effective in reducing edge 

crossings. Since exterior routing of an edge is inherently 

longer than interior routing, utilize the exterior routing 

carefully, and make   sure that edges routed externally are 

readable. Therefore, if possible do not allow any edge 

crossing within the external face. Two edges cross in the 

external face if and only if they cross internally. 

3) Third technique reduces density by coupling groups of 

edges as bundled splines that share part of their route. This 

frees up drawing area without compromising   structural 

clarity. Considering non-straight line edges opens up even 

more possibilities for better clarity. 
 

 Together, these techniques are able to reduce clutter, 

density and crossings compared with existing methods. This 

method also reduces the edge lengths. Figure 3 shows 

implementation of these techniques one by one and the final 

Fig. 3(e) shows combining effect of all these techniques on 

layout in Fig. 3(a). The final Fig. 3(e) has much better clarity  

and visualization.  

 

 
Figure 3. Variations on circular layouts of a random graph (|V | =  

     80,|E| = 241) 

Fig. 3(a)  random order; 

Fig. 3(b)  edge-length minimizing order;  

Fig. 3(c)  bundling edges to save ink and to improve area utilization 

      (colors used to enhance readability);  

Fig. 3(d)  exterior routing lessens crossings and alleviates density; 

Fig. 3(e)  combining exterior routing with edge bundling. 

 

https://en.wikipedia.org/wiki/Bioinformatic
https://en.wikipedia.org/wiki/Network_topology
https://en.wikipedia.org/wiki/Star_network
https://en.wikipedia.org/wiki/Ring_network
https://en.wikipedia.org/wiki/Ring_network
https://en.wikipedia.org/wiki/Metabolic_network
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 This drawing convention is mainly used for small and 

medium sized networks. It can be used for the layout of 

networks and systems management diagrams, where it 

naturally captures the essence of ring and star topologies. It 

can be also used for other kinds of graphs, such as social 

networks, metabolic networks and WWW graphs. The usually 

unvisualized characteristics of self-organization, emergent 

structures, knowledge exchange, and network dynamics can 

be seen in the these drawings. Resource bottlenecks, 

unexpected work flows, and gaps within the organization are 

clearly shown in these circular drawings. 

 This drawing approach is a variant of circular drawing, so 

many disadvantages are same as of circular layouts like as the 

nodes need to arranged on the circumference, it restricts the 

area for the nodes to spread, it has long edges and exterior 

routes, overall dense drawing, cannot minimize the crossings 

beyond a certain extent, computation of radius of the circle 

etc. 
 

C.  Radial Layout Approach  
 

 Radial layout graph drawing algorithms are a well known 

method for creating drawings of rooted trees [6, 7, 8, 9]. In 

radial layout approach, the root vertex of a tree is positioned 

at the center of the drawing with descendant vertices situated 

on concentric circles emanating from it as shown in Fig. 4. 
 

 
Figure 4.  A radial layout graph drawing of a tree rooted at r    

      Fig. 4(a), and the division levels of v's annulus wedge   

      Fig. 4(b). 

 

 For a tree T with a height k, the layers of concentric circles 

are labeled as C1,C2......, Ck and each vertex is placed on circle 

Ci, where i is the depth of the vertex in the rooted tree [20]. 

Using a defined heuristic, a radial layout drawing algorithm 

allocates each vertex a space in the drawing, known as its 

annulus wedge. This wedge confines the layout of a vertex's 

subtree to particular area in the drawing. A vertex's annulus 

wedge is divided among its descendants at subsequent levels 

in the subtree (Fig. 4(b)). 

 For a tree T rooted at a vertex r, a new radial layout graph 

drawing T' is obtained  as follows. The algorithm first places 

the root vertex at the center of the viewing plane and allocates 

it an annulus wedge of the entire drawing (360
0
). This space is 

divided among the root's descendants: the annulus wedge for a 

child vertex c of v is based on the number of leaf vertices in 

the subtree rooted at c proportional to the number of leaf 

vertices in the subtree rooted at v. Each vertex is placed at the 

center of its annulus wedge on a concentric circle 

corresponding to its depth in the tree. The algorithm continues 

down each subtree until positions for all of the graph's vertices 

in the new drawing T' are calculated. A new view of the 

network is constructed every time the user selects a new focal 

point vertex. 
 The advantage of the radial layout approach are: First one 

is  the root node is taken as the center of graph so it helps to 

get focus on a particular node  and its relations. Second, since 

the length of each orbit increases with the radius, there tends 

to be more room for the nodes. A radial tree will spread the 

larger number of nodes over a larger area as the levels 

increase. Third, the radial tree graph also solves the problem 

of drawing a tree so that nodes are evenly distributed. Radial 

layouts are used to display large hierarchies networks. 

 However, like with any graph drawing algorithm, the 

drawings generated by radial layout algorithms do have some 

drawbacks. The number of nodes increases exponentially 

with the distance from the first node, whereas the 

circumference of each orbit increases linearly, so by the outer 

orbits, the nodes tend to be packed together. Although the use 

of concentric circles does make it easier for users to ascertain 

the depth of a vertex in a tree, these circles confine vertices to 

positions that may not be optimal and can make it difficult for 

users to visually distinguish siblings from their parent. This is 

because sibling vertices may be spread out widely on their 

corresponding circle, and thus the lengths of the edges to their 

parent are dramatically different. 

 For example, the drawings in Figure 5 depict the same tree 

from Figure 4 but based on a different root vertex. In Figure 

5(b), the edges marked by arrows illustrate edges for sibling 

vertices that are different in length. Another problem is that 

radial layout drawings can still allow edge crossings, even if 

the graph is planar (Figure 5(c)). These flaws can degrade the 

readability of a graph. 

 

 
 

Figure 5.  A radial layout graph drawing of the same tree from       

      Fig. 4(a), but with a different root vertex as the focal point 

      (Fig. 5(a)). Fig. 5(b) illustrates how sibling vertices have 

      variable edge lengths to their parent, and Figure 5(c)   

      highlights edge crossings in the drawing. 
 

 

 The radial layout is suitable for large and medium-sized 

data analysis like to identify the center with complex and large 

number of acts in a large database, typically telephone 

message declarations, e-mail between records and financial 

transactions, etc. Radial tree graph drawing algorithms are 

used for representing large hierarchies, business relation 

between families, marital ties between families, directory 

structure of websites etc. 
 

 
 

Figure 6.  Showing business relations between families. 
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D.  Context-Free Radial Layout Approach  
 

 Context-Free Radial Layout drawings of graph adhere to 

three aesthetic goals: (1) minimize the number of edge 

crossings (edges are drawn as straight- line segments), (2) 

minimize the total angular difference between the root's 

children's positions from the initial drawing to the new 

drawing, and (3) maximize the angular resolution of 

parent-child edges. These drawings conform to two 

constraints: (1) the root vertex is placed at the center of the 

drawing, and (2) vertices are equidistant to their parent vertex 

in the tree. This approach is designed to prevent two specific 

types of edge crossings: (1) edge crossings between sibling 

vertices, and (2) crossings between the edge of a vertex to its 

parent with one of its edges to its children. 
 

 This graph visualization system allows users to explore the 

structure and properties of a graph via multiple spanning 

-tree-based drawings. Given a graph G, a user-selected vertex 

r ϵV(G), and an initial graph drawing T' for G, this graph 

drawing algorithm generates a new drawing of G based on a 

spanning tree rooted at r extracted from G. This algorithm is 

called as "context free" because the placement of children, 

relative to the frame of reference of the parent, only depends 

on the parent's position. 
 

 This visualization system creates a new drawing for a graph 

G with an initial drawing T' in three stages: First it extracts a 

spanning tree T rooted at r from G using breadth- first search.  

Second,  by using this tree T, the system calculates the graph's 

vertices relative polar coordinates from their positions in T'. 

Based on these initial positions, the system then calculates the 

vertices relative polar coordinates in the new drawing. Third, 

Instead of using concentric circles where one circle is used for 

positioning all the vertices for a given depth in the tree, this 

algorithm creates drawings using a series of overlapping 

circles that we call containment circles. Each non-leaf vertex 

v ϵ V (T) is given its own containment circle centered at v and 

only v's children are positioned on this circle. Figure 7(a) to 

7(f) shows how a radial layout is generated from a normal 

graph. Figure 8(a) to 8(f) shows the generation of a new radial 

layout from Fig. 7(f) by selecting a new vertex as root.  Figure 

9(a) to 9(h) shows the generation of a graph with 

Context-Free Radial Layout Approach in detail. 
 

 This approach enables the drawing algorithm to position 

sibling vertices close together and emphasize the parent-child 

relationships in the tree much better than other layouts. It also 

helps to see the graph with single user perspective by making 

it root. These layouts has high-level layout space utilization in 

the same proportion, with clearer hierarchy structure and less 

edge crossings, and the clarity of clustering performance is 

better. Also edge lengths decrease monotonically with 

distance from root, and all siblings within a family are arrayed 

along visually salient arcs equidistant from their common 

parent. With regard to animating transitions, this approach 

ensures that sibling edges never cross when a new focal node 

is selected, and whenever the graph to be drawn is itself a tree. 
 

 However, like with any graph drawing algorithm, the 

drawings generated by context free radial layout algorithms  

have the drawback that with every next level of containment 

circles the radius of circle becomes half of the previous level 

circle, so remote descendants of the root can become 

vanishingly small on the viewing plane. Also the edge 

crossings can occur when long subtrees encroach on 

neighboring containment circles. 

 

 Context free radial graph drawing algorithms are used for 

representing large hierarchies, business relation between 

families, marital ties between families, directory structure of 

websites etc. 

 

 
 

Figure 7. This graph visualization system first generates a 

force-directed layout drawing of a graph with 50 vertices (Fig. 

7(a)). A user then selects a vertex  (indicated by the arrow) 

to become the root of a new spanning-tree based drawing for 

the graph  (Fig. 7(b)). The movement of the graph's vertices 

and edges is animated as the visualization system transitions 

from the original drawing to the new  drawing (Fig. 7(c) to 

Fig. 7(e)). The animation sequence is complete when the 

vertices reach their  final positions in the new layout (Fig. 

7(f)). 
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Figure 8.  Using the same spanning tree drawing from Fig. 

7(f), a user selects a different vertex in the graph indicated by 

the arrow to become the root of a new spanning-tree-based 

drawing (Fig. 8(b)). The  movement of the graph's vertices 

and edges is animated as the visualization system transitions 

from the original drawing to the new drawing (Fig. 8(c) to Fig. 

8(e)). The animation sequence is complete when the vertices 

reach their final positions in the new layout (Fig. 8(f)). 

 

Working of a context free radial graph drawing approach 

 

 
 

              Fig. 9(a)                                     Fig. 9(b) 
 

 In Figure 9(a), the root is first placed at the center of the 

drawing along with its containment circle with a radius of R. 

The root's annulus wedge is divided into three equal portions 

of size Ψ and its first child is positioned at Ө.  
 

 In Figure 9(b), the root's children are positioned on its 
containment circle. 

 
 

                Fig. 9(c)                                       Fig. 9(d) 
 

 Figure 9(c) each of the root's children is allocated a 

separate containment circle with a radius of λ. The algorithm 

then allocates space in the drawing to position v's children. v's 

annulus wedge of size Ω  is centered on the arc of v's circle 

that is outside of the root's circle. The angles α and β are 

relative to v's position 
 

 Figure 9(d), v's annulus wedge is divided into four equal 

parts of size Ψ. Each child of v is positioned in the center of 

one v's annulus wedge subdivisions starting at Ө. 
 

 
 

              Fig. 9(e)                                       Fig. 9(f) 
 

 In Figure 9(e) and Figure 9(f), the drawing algorithm 

continues down the subtree rooted at v allocating containment 

circles and annulus wedges for descendant vertices. 

 
 

                   Fig. 9(g)                               Fig. 9(h) 
 

 Figure 9(g), the radius λ is half the size of that vertex's 

parent's containment circle.  

 Figure 9(h),The algorithm positions the rest of the graph's 

vertices, resulting in the final drawing of graph. 

 

Figure 9. The above diagram illustrates how context free   

    radial graph drawing approach works and     

    constructs a new drawing for a tree T rooted at r. 

 

 

E.  Spring layout  
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 In the drawing of undirected graphs there is a problem of  

"too much freedom". The spring algorithm (Eades [7], 1984) 

is a successful layout creation algorithm for drawing an 

undirected graph. The basic idea of the spring algorithm is to 

treat a graph as a mechanical system, in which nodes are 

replaced by steel rings and edges by springs connected to the 

rings. All the springs have the same natural length k, and each 

spring has a current length d. Given a pair of rings connected 

by a spring, if k>d (spring is stretched), then the spring 

attracts the rings; if k<d (spring is compressed), then the 

spring repulses the rings; if k=d (Zero force & Zero energy), 

then the rings are stable. The spring forces will attract or 

repulse the rings until the system reaches the minimum 

energy. This is called the balanced state. The strength of the 

forces is determined by k and d. Eades[7] calculates the forces 

using the functions: 
 

 
 

where fa is the attractive force, fr is the repulsive force, and C1, 

C2, C3, C4are coefficients. The Simple Algorithm given by 

Eades [7] is  

 

Algorithm SPRING(G:graph); 
 

Place vertices of G in random locations; 

Repeat M times 

Calculate the force on each vertex; 

Move the vertex C4 *(force on vertex) 

Draw graph on CRT or plotter. 

 

   
            Fig. 10(a)                 Fig. 10(b)                   Fig. 10(c) 

 
Figure 10. Illustration of a generic spring embedder: starting from  

       random positions, treat the graph as spring system and  

       look for a stable configuration (Fig. 10(a) to Fig. 10(c)). 

 

 The input of a spring algorithm is an undirected graph, and 

the output of the algorithm is a drawing of the embedded 

graph. The running time of a spring algorithm is O(n
2
), where 

n is the number of the nodes. The layout generated by a spring 

algorithm has two features: display of symmetry and uniform 

edge length. A spring system is not guaranteed to generate a 

good drawing for all graphs. The forces exerted on 

some rings might be too strong or too weak, and the spring 

system cannot arrive at the balanced state. One solution is to 

adjust the coefficients; another is to adopt different force 

models. Some implementations, however, also set a fixed 

number of iterations, in order to end the spring forces in a 

predictable time.  There are some variants of the spring 

algorithm that adopt different force models. All of these 

algorithms are broadly called force-directed algorithms in 

most literature. 

 

 

 

F.  Spring layout (Variant having spring system and    

     electrical charges)  
 

 Force-directed methods use analogies from physics to 

compute the positions of a graph's vertices. Consider an 

undirected graph G = (V, E) as a system of bodies (V), 

influenced by forces (E). The layout algorithm's goal is to find 

a configuration of those bodies where the sum of all forces is 

minimized, i.e. it assigns every vertex to a position 

such that the sum of forces which influence this vertex is 0. 
 

 The model in the spring layout uses a combination of 

springs and electrical forces. The edges correspond to 

springs. The vertices correspond to equally charged bodies 

which experience mutually repulsive forces in between them.  

In the following, we denote vertices by u, v ϵ V , and by    

R their position vectors in the two-dimensional 

space. The length of the difference vector  is denoted 

by 

 
 

i.e. the euclidian distance of the points (xu, yu) and (xv, yv). 

Moreover,  denotes the unit vector 

 

 
which points from  

The repulsive force that v experiences from u obeys the 

Coulomb's  law equation 

 
where c0 ϵ R is a constant which determines the strength of the 

repulsive force at either one of the vertices u or v. The spring 

force experienced by v via the spring from u can be computed 

by the Hooke's law equation. 
 

 
 

where the constant c1 ϵ R denotes the strength of the spring 

and l ϵ R denotes its natural length. The global force that is 

acting upon a vertex v ϵ V , can be computed as follows: 
 

 
 

Working of this algorithm is as follows:  

  

 Vertices, which are not yet at equilibrium of forces, 

experience a force. To relax the system, vertices are 

iteratively moved towards the direction of their influencing 

force. At time t, a vertex v experiences the force . After 

these forces are computed for all vertices at time t, each vertex 

v is moved by  in its respective direction. 

The constant  avoids that the vertices are moved 

too far. The simplest option to terminate the algorithm is to 

stop after a certain number of iterations. Another option is to 

compute the global force of the system at a time t. This can be 

done as follows: 

 
If Fglobal reaches/falls below a certain value (ideally, Fglobal = 

0), then the computation can be stopped. 
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          Fig. 11(a)                Fig. 11(b)      Fig. 11(c)         Fig. 11(d)       

Figure 11: Process showing how nodes of a graph in the spring   

    embedder algorithm reaches to equilibrium position   

    (Fig. 11(a) to Fig. 11(d)). 

 

 In order to compute the force  of a vertex v ϵ V , the 

sum  is computed. This computation is 

done n(n-1) = O(n
2
) times per iteration. Vertices, which are 

far apart, only experience a very weak repulsive force from 

each other. Because of this, one can neglect these distant 

vertices in the computation of the repulsive force. The force 

 is computed only for vertices u whose distance to v 

is  (for a proper constant d ϵ R). 
 

 The advantage of spring approach is that it gives relatively 

good results in a simple and intuitive manner. The spring 

system is a fast in speed and usually converges after 100 

iterations or so. It avoids node overlapping and edge 

crossings. It gives the symmetric layouts as output. 

 The disadvantage is that the given algorithm only works for 

connected graphs and for using it on disconnected graphs 

additional exercise is to be done. The other drawbacks of the 

approach are its running time complexity, possibility of 

convergence to a poor local minima and do not have a good 

termination condition.  

 Spring models are generally not used for large networks 

because there is a good chances that system is likely to settle 

in a local minimum. They are used to visualize small size 

networks. Spring models can be used to visualize small and 

medium social networks (Fig. 12). Moreover with some 

modifications can be used in bioinformatics including 

phylogenetic trees, protein-protein interaction networks, and 

metabolic pathways. 

 
Figure 12. A Small Sized Social Network 

 

G.  Fruchterman and Reingold Layout (Based on     

     Electrostatic forces & Temperature concept ) 
 

 Fruchterman and Reingold [21] replace the spring 

embedder's repelling and attracting forces between pairs of 

vertices by repelling forces 

 
between every pair of vertices u and v, and additional 

attracting forces 

 
only between adjacent vertices. Parameter  l describes the 

optimum length of a single edge, and is set to c. Sqrt (cA / n),  

where cA is the desired layout area, and c is an experimentally 

chosen constant. These functions are cheaper to evaluate and 

steeper, thus resulting in faster convergence. The algorithm to 

find a stable configuration features an adaptive parameter 

controlling the maximum displacement allowed. 

 We have only two principles for graph drawing in this 

Layout: 

1) Vertices connected by an edge should be drawn near    

  each   other. 

2) Vertices should not be drawn too close to each other. 

  How close vertices should be placed depends on how  

  many there are and how much space is  available. For  

  placing nodes we calculate the optimal distance k    

  between  vertices. Some graphs are too complicated to 

  draw attractively at all. 
 

There are three steps to each iteration:  

1.  Calculate the effect of attractive forces on each vertex,  

2.  Then calculate the effect of repulsive forces, and  

3.  Finally limit the total displacement by the temperature   

and cooling concept.  

 Temperature indicate the maximum distance a vertex can 

travel when being updated. The idea is that the displacement 

of a vertex is limited to some maximum value, and this 

maximum value decreases over time (cooling); so, as the 

layout becomes better, the amount of adjustment becomes 

smaller and smaller. 

 A special case occurs when vertices are in the same 

position: our implementation acts as though the two vertices 

are a small distance apart in a randomly chosen orientation: 

this leads to a violent repulsive effect separating them. 
 

We calculate k, the optimal distance between vertices as 

 
 

where the constant C is found experimentally. We would like 

the vertices to be uniformly distributed in the frame, and k is 

the radius of the empty area around a vertex. If fa and fr are 

the attractive and repulsive forces, respectively, with d the 

distance between the two vertices, then 

fa(d) = d
2
/k 

fr(d) = -k 
2
/ d 

Figure 13. illustrates these forces and their sum versus 

distance. The point where the sum of the attractive and 

repulsive force crosses the x -axis is where the two forces 

would exactly cancel each other out, and this is at k, the ideal 

distance between vertices. 
 

 
Figure 13. Forces versus distance 

 

        

                                         
     Fig. 14(a)                                   Fig. 14(b) 
Figure 14. Fig. 14(a) Showing a graph. Fig. 14(b) Shows same graph of      

      Fig. 14(a) after applying Fruchterman and Reingold algorithm. It 

      is more symmetrical and balanced than previous one. Available 

at       [21]. 
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 This approach is simple, intuitive, and interactive. This 

approach can produce good quality results for small and 

medium sized graphs. The results are good in terms of 

uniform edge length, uniform vertex distribution and showing 

symmetry. This approach can be easily adapted and extended 

and have flexibility due to which can be used in 3D graph 

drawing, cluster graph drawing, constrained graph drawing 

and dynamic graph drawing. The primary advantage of this 

approach is speed. 

 The disadvantage of this approach is poor local minima. 

Large graphs have many local minima's so there is good 

chances that system is likely to settle in a local minimum.  

Second, because this approach had no explicit concept of 

energy, and hence could not detect a stopping condition,  so 

simply 50 iterations every time are used; this was excessive on 

the simpler graphs. Third is for a given vertex, repulsive force 

from all other vertices needs to be calculated, this makes the 

per iteration cost of the algorithm (O|V
2
|+|E|) with |V| the 

number of vertices and |E| number of edges in the graph for 

basic approach. This approach becomes slow as the networks 

grow. 

 This approach can be used to visualize small and medium 

social networks like organizational network, communication 

networks, collaboration networks. It can be used to visualize 

information networks like WWW hyperlinks, blog networks, 

citation networks. It can be used to visualize technological 

networks like power grid, airline, road, river, telephone 

networks. It can also be used to visualize biological networks 

like metabolic networks, food web, neural networks etc. 

It can also be used in visualize the tree structures and 3D 

drawings. 
 

 
 

 

Figure 15. Showing a collaboration network 
 

 

H.  GEM Layout  
 

 GEM  is short form for graph embedder. GEM layout 

algorithm contains the concept of a local temperature, the 

attraction of vertices towards their barycenter and the 

detection of oscillations and rotations. The major design goal 

was that interactive speed should be achieved even for 

medium-sized graphs. We consider a drawing to be 

interactive if it takes less than 2s to compute. Randomization 

plays an important role in several places of the algorithm. 
 

 The discussion of the GEM algorithm starts with the 

observation that cooling schedules appear to give better 

results than methods relying solely on a gradient descent, but 

their running time is unsatisfactory. Temperatures as used in 

GEM indicate the maximum distance a vertex can travel when 

being updated. The temperature scale has a direct influence 

on a suitable choice of other parameters, i.e. the constants 

used in the formulae for the attractive and repulsive forces. 

 Rather, the algorithm adapts to the data locally and does not 

require global cooling as assumed by a schedule. For each 

vertex, a local temperature is defined that depends on its old 

temperature and the likelihood that the vertex oscillates or is 

part of a rotating subgraph. Local temperatures raise if the 

algorithm determines that a vertex is probably not close to its 

final destination. The global temperature is defined as the 

average of the local temperatures over all vertices. Thus, it 

indicates how stable the drawing of the graph is. This 

algorithm consists of two stages, an initialization stage and an 

iteration stage. The initialization consists of the assignment of 

an initial position, impulse and temperature to each vertex. 

The main loop updates vertex positions until the global 

temperature is lower than a desired minimal temperature or 

the time allowance has expired. 

 It is found in practice that most graphs would easily cool 

down to Tmin, we cannot exclude the possibility of a graph 

moving chaotically between rounds. This can be solved by 

choosing Tmin larger. Vertices are moved sequentially 

according to a choice function. Assuming that vertex v was 

chosen to be updated, the attractive and repulsive forces 

acting on v are computed. In addition, a gravitational force 

pulling the vertex towards the barycenter of the vertex cluster 

is assumed. The use of gravitation accelerates the 

convergence of GEM. In addition, it helps to keep 

disconnected graphs and loosely connected components 

together. 

 The resulting force is scaled with v‘s current temperature to 

form the impulse of v such as to reflect the algorithm‘s 

―knowledge‖ of the state of computation. A low temperature 

indicates either that the layout is almost stable (at least 

locally) or that there exist oscillations or rotations. In each 

case, movements should be short. GEM has the ability to 

leave wells containing local energy minima, since local 

temperature increases change the global energy distribution. 

Relative to the old distribution, uphill moves become 

possible. Unfortunately, this feature makes proofs of 

convergence hard, if not impossible. 

 The advantages of this layout are as follows: This algorithm 

achieves drawings of high quality on a wide range of graphs 

with standard settings. The algorithm is fast (is significantly 

faster than Kamada and Kawai [2] or Fruchterman and 

Reingold Layout [21] algorithms), being thus applicable on 

general undirected graphs of substantially larger size and 

complexity. The GEM layout approach is optimal to layout 

cyclic as well as acyclic graphs. Aesthetically pleasing 

solutions are found in most cases. Also, the additional 

attractive force has two important effects: unconnected and 

loosely connected components are not separated too far, and it 

may lead to a 30% increase in convergence speed. 
 

 The one drawback is that the output of the algorithm is 

often depends on the original layout of the graph. It will be 

more jumbled if the underlying graph is very jumbled. It may 

at times help to first provide one of the other algorithms, 

which could put the vertices in a slightly better order, and then 

apply the GEM layout algorithm. The other disadvantage is of 

oscillating nodes. In some cases, a node may not find its final 

position even after more than 100 iterations, and will alternate 

between several positions indefinitely. The main reason for 

this phenomenon is that the movement calculation is not 

continuous, but discrete. 
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 The GEM approach can be used for somewhat larger 

graphs compared to Kamada and Kawai [2] approach and 

Fruchterman and Reingold [21] approach. It can be used on 

different types of somewhat complex graphs and trees. This 

approach can be used to visualize medium and large sized 

undirected social networks, information networks, 

technological networks, biological networks etc. It can also be 

used in visualize the tree structures and 3D drawings. 
 

I.  Kamada Kawai Layout (Spring model based on Euclidean 

 distance) 
 

 The 1989 algorithm of Kamada and Kawai [2], introduced 

a different way of thinking about ―good‖ graph layouts. 

Whereas the algorithms of Eades [7] and Fruchterman- 

Reingold [21] aim to keep adjacent vertices close to each 

other while ensuring that vertices are not too close to each 

other, Kamada and Kawai [2] take graph theoretic approach. 
 

 In this model, the ―perfect‖ drawing of a graph would be 

one in which the pair-wise geometric (Euclidean) distances 

between the drawn vertices match the graph theoretic 

pair-wise distances, as computed by an All-Pairs-Shortest 

-Path computation. As this goal cannot always be achieved for 

arbitrary graphs in 2D or 3D Euclidean spaces, the approach 

relies on setting up a spring system in such a way that 

minimizing the energy of the system corresponds to 

minimizing the difference between the geometric and graph 

distances. In this model there are no separate attractive and 

repulsive forces between pairs of vertices, but instead if a pair 

of vertices is (geometrically) closer/farther than their 

corresponding graph distance the vertices repel/attract each 

other.  

 In this approach a dynamic system is considered in which n 

(= |V|) particles are mutually connected by springs. Let p1, p2, 

. . . . . , pn be the particles in a plane corresponding to the 

vertices v1, v2, ... , vn ϵ V respectively. This approach relate the 

balanced layout of vertices to the dynamically balanced 

spring system. As a result, the degree of imbalance can be 

formulated as the total energy of springs, i.e., 
 

                         (1) 
 Pleasing layouts can be obtained by decreasing E, then the 

best layout is the state with minimum E in this model. The 

original length lij of the spring between pi and pj corresponds 

to the desirable length between them in the drawing, and is 

determined as follows. The distance dij between two vertices 

vi and vj in a graph is defined as the length of the shortest paths 

between vi and vj. Then the length lij is defined as  
 

li j = L × di j 
 

where L is the desirable length of a single edge in the display 

plane. When the display space is restricted, it is a good way to 

determine L depending on the diameter (i.e., the distance 

between the farthest pair) of a given graph. That is, 
 

 
where L0 is the length of a side of display square area. The 

parameter kij is the strength of the spring between pi and pj , 

and is determined as follows. The expression (1) can be 

regarded as the square summation of the differences between 

desirable distances and real ones for all pairs of particles. 

From this point of view, the differences per unit length is 

better to be used in (1). Then, kij  is defined as- 
 

 
where K is a constant. The parameters lij and kij are symmetric, 

i.e., lij = lji and kij = kji (i≠ j). In this spring model, the density of 

particles does not become large, because every two nodes are 

forced to keep certain distance by the tension of a spring. Note 

that symmetric graphs correspond to symmetric spring 

systems, which result in symmetric layouts by minimizing E. 

 Assume, the position of a particle in a plane is expressed by 

x and y coordinate values. Let (x1, y1), (x2, y2),... (xn, yn). be the 

coordinate variables of particles p1, p2, . . . . . , pn respectively. 

Then, the energy E defined as (1) is rewritten by using these 

2n variables as follows. 
 

                    (2) 

 The purpose is to compute the values of these variables 

which minimize E(x1,x2,···.,xn, y1,y2,....yn). (Here after the 

parameters of the function E are omitted). It is, however, quite 

difficult to compute the minimum, so instead of it a local 

minimum is computed. A method is used for computing a 

local minimum of E from a certain initial state based on the 

Newton-Raphson method. The necessary condition of local 

minimum is as follows. 
 

                                         (3) 
 The state satisfying above equation (3) corresponds to the 

dynamic state in which the forces of all springs are balanced. 

The partial derivatives of (2) by xm and ym are calculated. It 

gives 2n simultaneous non-linear equations of (3). But they 

cannot be directly solved by using a 2n-dimensional 

Newton-Raphson method, because they are not independent 

of one another. A approach is adopted here, in which only one 

particle pm(xm , ym) is moved to its stable point at a time, 

freezing the other particles. That is, viewing E as a function of 

only xm and ym , they compute a local minimum of E by using 

a two-dimensional Newton-Raphson method. They obtained a 

local minimum which satisfies equation (3) iterating this step. 

In each step, they choose the particle that has the largest value 

of ∆m which is defined as 
 

 
 

Starting from which is equal to the current position 

(xm, ym), the following step is iterated.  

 
The unknowns and  will be computed in further steps . 

The iterations terminates when the value of ∆m at  

becomes small enough. 

 Figure 16. illustrates the process of minimizing E in the 

case of a 6-vertex graph. First the particle B is moved (Fig. 

16(b)) and next the particle F is moved (Fig. 16(c)). The final 

state (Fig. 16(d)) is obtained after 21 moving steps. 

  

 
                        Fig. 16(a)                               Fig. 16(b) 
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                  Fig. 16(c)                                              Fig. 16(d) 

 
 

Figure 16. The energy minimization process. Available at [2]. 

 
  The advantages of this approach are it is used for 

drawing general undirected graphs for human understanding. 

It can be widely used in the systems which deal with network 

structures. Here, the graph theoretic distance between vertices 

in a graph is related to the geometric distance between them in 

the drawing. This spring algorithm has many good properties 

like; symmetric drawings, a relatively small number of edge 

crossings, and almost congruent drawings of isomorphic 

graphs. This approach can be easily adapted and extended and 

have flexibility due to which can be used in 3D graph 

drawing, cluster graph drawing, constrained graph drawing 

and dynamic graph drawing. The important thing is it can be 

applied on weighted graphs. 

 The disadvantage is this algorithm does not guarantee to 

compute the true minimum of E. In order to prevent the 

energy from converging to a large local minimum, a simple 

test is to be added to the  algorithm. 

The algorithm of Kamada and Kawai [2] is computationally 

expensive, requiring an All-Pair-Shortest-Path computation 

which can be done in O( |V|
3 
) time using the Floyd-Warshall 

algorithm or in O(|V|
2
 log |V |+|E||V|) using Johnson‘s 

algorithm. It has lot of iterative computations. It can be slow 

as the network grows. 

 This approach can be used to visualize small and medium 

sized undirected social networks, information networks, 

technological networks, biological networks etc. It can also be 

used in visualize the tree structures and 3D drawings. Most 

important is it can be used on weighted networks. 

 
 

Figure 17. A weighted network. Available at [2]. 

 
I.  Random Graphs Layout 

 

 The notion of a random graph was first introduced by Erdos 

[56]. The theory of random graphs was founded by Erdos and 

Renyi [56], [57]. A random graph is a graph generated by 

some random procedure. The two standard models for 

random graphs are considered here. There are many 

(non-equivalent) ways to define random graphs. The simplest, 

denoted by Gn,m (or one of several common similar notations), 

where n and m are two integers with 0 ≤ m≤ , is obtained 

by taking a set of n elements as the set of vertices, for 

definiteness we may take the integers 1,........, n, and then 

randomly selecting m (by drawing without replacement) of 

the  possible edges.  

 A closely related model, denoted by for example Gn,p, 

where  0 ≤ p ≤ 1, is obtained by taking the same vertex set but 

now selecting every possible edge with probability p, 

independently of all other edges (In particular, p=1/2 gives 

the uniform distribution over all (labelled) graphs on n 

vertices). The main interest is of anyone is in the case when n, 

the number of vertices, is very large, and especially in 

asymptotic results when n→∞ and m or p is a given function 

of n. 
 

Example for drawing random graphs is given below in Figure. 

18: 
 

 
 

Figure 18. Evolution of the graph (p grows) G= Gn,p 

 

 The advantage of the Erdos-Renyi model [56], is the 

independence of choices for the edges (i.e., each pair of 

vertices has its own dice for determining being chosen as an 

edge). The computations are easy as the probability of two 

independent events is the product of probabilities of two 

events. The beauty of random graphs lies in being able to use 

relatively few parameters in the model to capture the behavior 

of almost all graphs of interest. And finally it is a very fast 

approach to draw graphs. 
 

 To model real graphs, there are some obvious difficulties. 

For example, the random graph G(n,p) has all degrees very 

close to pn if the graph is not so sparse, (i.e., p≥ log n/n). The 

distribution of the degrees follows the same bell curve for 

every vertex. As we know, many real-world graphs satisfy the 

power law which is very different from the degree distribution 

of G(n,p). In order to model real-world networks, it is 

imperative to consider random graphs with general degree 

distribution and, in particular, the power law distribution. 

This algorithm is not recommended for automata with many 

high-degree vertices and for those with many vertices, as there 

is more potential for edge-intersection and vertex overlap 

respectively. Still, this algorithm can be useful by generating a 

radically new layout each time it is called, and has its uses for 

small automata. The other disadvantage of random approach 

is that it is not easy to interpret the graph. 
 

 The random graph approach can be used for small and 

somewhat medium size graphs. With some modification and 

addition of generating function it can be used for real world 

networks like companies director's network, actors network, 

networks from biomedicine field, collaboration networks, 

www linked web pages network, physically connected 

network of routers, email network, citation network, sexual 

networks etc.  
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Figure 19. shows a random graph and its visual complexity    

problem if number of nodes and edges are too many.  

 

 
Figure 19. Showing a random graph & its visual complexity    

       problem for graphs having large number of nodes and  

       edges . 

 
J.  Multidimensional Scaling Layout 
 

 

 The goal of an MDS analysis is to find a spatial 

configuration of objects, when all that is known, is some 

measure of their general (dis)similarity. The spatial 

configuration should provide some insight into how the 

subject(s) evaluate the stimuli in terms of a (small) number of 

potentially unknown dimensions. Once the proximities are 

derived the data collection is concluded, and the MDS 

solution has to be determined using a computer program. 

 The basic approaches of MDS are Classical MDS and 

Nonmetric MDS. Classical MDS assumes that the data, the 

proximity matrix, say, display metric properties, like 

distances as measured from a map. Thus, the distances in a 

classical MDS space preserve the intervals and ratios between 

the proximities as good as possible. While, Nonmetric MDS 

assumes that the order of the proximities is meaningful. The 

order of the distances in a nonmetric MDS configuration 

reflects the order of the proximities as good as possible while 

interval and ratio information is of no relevance. 

 
Classical MDS 
 

 Consider the following problem: looking at a map showing 

a number of cities, one is interested in the distances between 

them. These distances are easily obtained by measuring them 

using a ruler. Apart from that, a mathematical solution is 

available: knowing the coordinates x and y, the Euclidean 

distance between two cities a and b is defined by 
 

 
 

Now consider the inverse problem: having only the distances, 

is it possible to obtain the map?  
 

 Classical MDS, which was first introduced by Torgerson 

[53], addresses this problem. It assumes the distances to be 

Euclidean. Euclidean distances are usually the first choice for 

an MDS space. There exist, however, a number of non- 

Euclidean distance measures, which are limited to very 

specific research questions  In many applications of MDS the 

data are not distances as measured from a map, but rather 

proximity data. When applying classical MDS to proximities 

it is assumed that the proximities behave like real measured 

distances. This might hold e. g. for data that are derived from 

correlation matrices, but rarely for direct dissimilarity ratings.  
 

 The advantage of classical MDS is that it provides an 

analytical solution, requiring no iterative procedures. 

 

Steps of a Classical MDS algorithm 
 

The classical MDS algorithm rests on the fact that the 

coordinate matrix X can be derived by eigenvalue 

decomposition from the scalar product matrix B = XX'.The 

problem of constructing B from the proximity matrix P is 

solved by multiplying the squared proximities with the matrix 

J=I - n
-1

 11'.  This procedure is called double centering. The 

following steps summarize the algorithm of classical MDS: 

 

1. Set up the matrix of squared proximities P
(2)

 = [p
2
]. 

2. Apply the double centering: B = -  J P
(2) 

J using the 

 matrix J=I - n
-1

 11', where n is the number of objects. 

3. Extract the m largest positive eigenvalues λ1..... λm of B and 

 the corresponding m eigenvectors e1 ...... em. 

4. A m-dimensional spatial configuration of the n objects is 

 derived from the coordinate matrix where 

 Em is the matrix of m eigenvectors and  ∆m is the diagonal 

 matrix of m eigenvalues of B, respectively. 

 

Take the example of cities in Denmark. Assume that we have 

measured the distances between Kobenhavn (cph), Arhus 

(aar), Odense (ode) and Aalborg (aal) on a map. Therefore, 

the proximity matrix (showing the distances in millimeters) 

might look like as Fig. 20: 

 
Figure 20. Proximity matrix 

After applying the steps of algorithm following graph will be 

obtained as MDS solution. 

 
Figure 21.  Shows a graphical representation of the MDS solution. 

     Remember that this "map" is derived only from the   

     distances between the points. Note that the dimensions 

     cannot directly be identified with "North-South" and  

        "East-West" without further rotation. 

 
 The advantage of classical MDS is that it provides an 

analytical solution, requiring no iterative procedures. It finds 

low-dimension projection that respects distances. Classical 

MDS is optimal for euclidean input data. It is still optimal, if 

matrix B has non-negative eigenvalues (position 

semi-definite) and it is very fast layout technique . 

 The disadvantage of classical MDS is slow, particularly for 

large data sets and the reasons for this will become apparent in 

its Computation process. Second, there is no clear guarantees 

for distances other than euclidean distances. It has no 

guarantees if matrix B has negative eigenvalues. There are 

two difficulties with increasing the number of dimensions. 

The first is that even 3 dimensions are difficult to display on 

paper and are significantly more difficult to comprehend. 
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Four or more dimensions render MDS virtually useless as a 

method of making complex data more accessible to the human 

mind. 

 MDS applications include scientific visualization and data 

mining in fields such as cognitive science, information 

science, psychophysics, psychometrics, marketing and 

ecology. In marketing, MDS is a statistical technique for 

taking the preferences and perceptions of respondents and 

representing them on a visual grid, called perceptual maps. By 

mapping multiple attributes and multiple brands at the same 

time, a greater understanding of the marketplace and of 

consumers' perceptions can be achieved, as compared with a 

basic two attribute perceptual map. MDS is becoming a 

popular method used in sequence clustering and visualization. 

In bioinformatics, MDS is used to reduce the dimensionality 

by giving the dissimilarity scores from each pair of sequences. 

These disimilarity scores are usually calculated using 

Sequence Alignment. By mapping each sequence from the 

high dimensional space to a visually acceptable space (such as 

2D/3D space), the correlations between each sequence cluster 

can be observed easily. 
 

Nonmetric MDS 
 

The assumption that proximities behave like distances might 

be too restrictive, when it comes to employing MDS for 

exploring the perceptual space of human subjects. In order to 

overcome this problem, Shepard [37],[38] and Kruskal [23] 

developed a method known as nonmetric multidimensional 

scaling.  

 In nonmetric MDS, only the ordinal information in the 

proximities is used for constructing the spatial configuration. 

A monotonic transformation of the proximities is calculated, 

which yields scaled proximities. Optimally scaled proximities 

are sometimes referred to as disparities   = f(p). The 

problem of nonmetric MDS is how to find a configuration of 

points that minimizes the squared differences between the 

optimally scaled proximities and the distances between the 

points. More formally, let p denote the vector of proximities 

(i. e. the upper or lower triangle of the proximity matrix), f(p) 

a monotonic transformation of p, and d the point distances; 

then coordinates have to be found, that minimize the so-called 

stress 
 

 
 

MDS programs automatically minimize stress in order to 

obtain the MDS solution; there exist, however, many 

(slightly) different versions of stress. 
 

Judging the goodness of fit 
 

The amount of stress may also be used for judging the 

goodness of fit of an MDS solution: a small stress value 

indicates a good fitting solution, whereas a high value 

indicates a bad fit.  Stress decreases as the number of 

dimensions increases. Thus, a two-dimensional solution 

always has more stress than a three-dimensional one. Since 

the absolute amount of stress gives only a vague indication of 

the goodness of fit, there are two additional techniques 

commonly used for judging the adequacy of an MDS solution: 

the Scree plot and the Shepard diagram  

 In a scree plot, the amount of stress is plotted against the 

number of dimensions. Since stress decreases monotonically 

with increasing dimensionality, one is looking for the lowest 

number of dimensions with acceptable stress. An "elbow" in 

the scree plot indicates, that more dimensions would yield 

only a minor improvement in terms of stress. Thus, the best 

fitting MDS model has as many dimensions as the number of 

dimensions at the elbow in the scree plot.  

 The Shepard diagram displays the relationship between the 

proximities and the distances of the point configuration. Less 

spread in this diagram implies a good fit. In nonmetric MDS, 

the ideal location for the points in a Shepard diagram is a 

monotonically increasing line describing the so-called 

disparities, the optimally scaled proximities. In an MDS 

solution that fits well the points in the scree plot are close to 

this monotonically increasing line. 
 

 Figure 22.  Shows a paradigmatic scree plot and a Shepard 

diagram. The elbow in the scree plot suggests a three- 

dimensional MDS space, while the little amount of spread in 

the Shepard diagram indicates a rather good fit of the solution. 

 

 
                            Fig. 22(a)                                                    Fig. 22(b) 
 

Figure 22. Fig. 22(a) Shows a Scree plot displaying an elbow 

      at three dimensions. 

         Fig. 22(b) Shows a Shepard diagram with the   

      optimally scaled proximities. 

 

Steps of nonmetric MDS algorithm 
 

The core of a nonmetric MDS algorithm is a twofold 

optimization process. First the optimal monotonic 

transformation of the proximities has to be found. Secondly, 

the points of a configuration have to be optimally arranged, so 

that their distances match the scaled proximities as closely as 

possible. The basic steps in a nonmetric MDS algorithm are: 
 

1. Find a random configuration of points, e. g. by sampling 

 from a normal distribution. 

2. Calculate the distances d between the points. 

3. Find the optimal monotonic transformation of the 

 proximities, in order to obtain optimally scaled data 

 f(p). 

4. Minimize the stress between the optimally scaled data 

 and  the distances by finding a new configuration of 

 points. 

5. Compare the stress to some criterion. If the stress is 

 small  enough then exit the algorithm else return to step 

 2. 
 

 The advantage of nonmeteric MDS are, it fulfills a clear 

objective without many assumptions  that is minimizing 

stress. Its results don‘t change with rescaling or monotonic 

variable transformation. It works even if you only have rank 

information. 

 The disadvantages of nonmetric MDS are,first, MDS is 

slow, particularly for large data sets and the reasons for this 
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will become apparent in its iterative computational steps.  

Second, because MDS is a numerical optimization technique, 

it can fail to find the true best solution because it can become 

stuck on local minima, solutions that are not the best solution 

but that are better than all nearby solutions. Third, normally, 

MDS is used to provide a visual representation of a complex 

set of relationships that can be scanned at a glance. Since 

maps on paper are two dimensional objects, this translates 

technically to finding an optimal configuration of points in 

2-dimensional space. However, the best possible 

configuration in two dimensions may be a very poor, highly 

distorted, representation of your data. If so, this will be 

reflected in a high stress value. Fourth, there are two 

difficulties with increasing the number of dimensions. The 

first is that even 3 dimensions are difficult to display on paper 

and are significantly more difficult to comprehend. Four or 

more dimensions render MDS virtually useless as a method of 

making complex data more accessible to the human mind. The 

second problem is that with increasing dimensions, you must 

estimate an increasing number of parameters to obtain a 

decreasing improvement in stress. The result is model of the 

data that is nearly as complex as the data itself. Fifth, in 

nonmetric MDS usually only local (not global) optimum 

found.  

 Non-metric MDS has been used extensively in the 

psychometrics and psychophysics communities to embed 

similarity and dissimilarity ratings derived from a variety of 

sources. MDS has been used extensively in geostatistics, for 

modeling the spatial variability of the patterns of an image 

and natural language processing, for modeling the semantic 

and affective relatedness of natural language concepts.MDS 

is also used in marketing, bioinformatics and ecology fields. 

MDS can be used for mapping computer usage data, 

mathematical graphs, social network graphs and 

reconstruction of molecules in nano-technology. 

V. CONCLUSION AND FUTURE SCOPE 

 Graph Drawing is concerned with the geometric 

representation of graphs and networks and is motivated by 

those applications where it is crucial to visualize structural 

information as graphs. Since graph drawing methods form the 

algorithmic core of network visualization, that is why 

bridging the gap between theoretical advances and 

implemented solutions is an important aspect. This paper 

presents an overview of many possible types of graph 

visualization approaches and their implementation details. Its 

primal goal is, to help a user, with some relational data on his 

hands and a need to visualizing it, with the choice of what to 

use, and what is out there that can be used. However, it can be 

also viewed as historical overview of graph drawing 

algorithms, and its evolution and will be quite helpful in the 

future development of related algorithms and technologies. 

 

 The field of graph drawing and visualization has a broad 

scope like development of tools and systems for graph 

drawing, development of user interfaces for viewing graphs, 

interactive exploration of large graphs, presentation of 

dynamic graphs and animation of graphs, applications of 

graph drawing to areas such as software visualization, user 

interface design and database query formulation. The field of 

graph drawing has mainly focused on the structure of graphs, 

whereas practitioners of information visualization are more 

concerned with embedding information, often multivariate, 

into the nodes and the links. In future we would like to work 

on how can we merge the best practices of both fields? 

 Multivariate networks are large and complex and their 

complexity will increase in the future. Thus, not all problems 

can be solved in the short term. There already exist a number 

of technical approaches, algorithms, and methods to 

interactively visualize multivariate networks.  In future we 

would also like to work on which (approaches) ones are 

suitable for solving specific tasks in our applications areas, 

what is their potential, and what are their limitations. By 

identifying the range of approaches that do exist, we see the 

potential for new, innovative visualization ideas. 
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