

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-2, Issue-6, June 2015

 53 www.ijeas.org

Abstract— This paper presents the development of an

Adaptive Digital Beam Forming (ADBF) application on

Software Defined Radio Platform using Open Source GNU

Radio software. Adaptive beam formers for sensor arrays are

widely used in RADAR, SONAR and communications

applications. This is to increase the directivity of the sensor

system to the target, while suppressing the interfering signals

having a direction of arrival different from that of a desired

signal. Array beam forming techniques can yield multiple beams

that are simultaneously available. The beams can be made to

have controlled beam width or high gain and low side lobe levels.

Beam-forming techniques dynamically adjust the array pattern

to optimize some characteristic of the received signal. Antenna

arrays using beam-forming techniques can reject interfering

signals having a direction of arrival different from that of

desired signal. The principal reason of interest is their ability to

automatically steer nulls into undesired sources of interferences,

thereby reducing output noise and enhancing the detection of

desired signal. Beam forming and beam scanning are generally

accomplished by phasing the feed to each element of an array so

that signals received from all the elements will be in phase in

particular direction. Digital beam forming is thus a powerful

technique for boosting the antenna performance. The work

reported in this paper is purely a software based approach

where all the waveform-specific processing is implemented on

host CPU. The results supporting the presented work are

furnished in this paper.

Index Terms—Adaptive Digital Beam Forming, Field

Programmable Gate Array, GNU Radio Software, Software

Defined Radio.

I. INTRODUCTION

 Beam forming technique utilizes an array of sensor

elements to focus a receiver channel on a specific Signal Of

Interest (SOI). Historically, it has been at the heart of RADAR

and SONAR signal processing. RADAR beam-forming

techniques are used for target detection in the presence of

ground clutter and jamming signals. It is used to steer the

beam to a particular direction without having to mechanical

steer the antenna element. The main goal of the beam forming

technique is directional transmission and reception. This can

be achieved by combining the elements of the array in two

ways. One of the way is the signal arrives from single and

particular direction combat with effective interferences. The

other way is the signal arrives from other direction

P. Ragasudha, M.Tech. student, Department of Electronics and

Communication Engineering, Vijay Rural Engineering College, Nizamabad,

Telangana, INDIA. Mobile No. 9030490670.

Dr. B. R. Vikram, Principal, Vijay Rural Engineering College,

Nizamabad, Telangana, INDIA. Mobile No. 9848884300.

K. Sridhar, Assistant Professor, Department of Electronics and

Communication Engineering, Vijay Rural Engineering College, Nizamabad,

Telangana, INDIA. Mobile No. 9848955100,.

compromising with the destructive interferences. So, one can

receive power from (direct the radiation towards) the desired

direction (with less interference) and nullifying the interfering

signal. It improves the Signal to Noise Ratio (SNR) and leads

a better signal estimation.

Many wireless communication applications and the other

signal intelligences can get benefit from beam forming

techniques. A beam forming approach is regarded as a vital

solution to the challenge of increasing spectral efficiency and

improving the performance of wireless communication

system. The advantage includes, allowing for an increased

capacity of a communications network through the use of

Space Division Multiple Access (SDMA) techniques. Since a

beam former can steer the look direction toward the SOI, this

frees the carrier frequency for use by other resources. Also, as

the beam former is focused in a particular direction, the

antenna sensitivity can be increased for a better SNR, a factor

that is especially important when receiving weak signals. Both

reception and transmission ranges can be significantly

increased with beam forming. Additionally, beam forming

techniques provide reduced probability of interception of

secure transmissions. Finally, signal interference is reduced

due to the ability to reject interfering signals.

The basic beam forming system is as shown in Fig. 1. The

beam forming is achieved by the use of an array of sensors

such as antenna, hydrophones and so on. The signal

originating far away from the sensor array can be modeled as

a plane wave. The signal received by each sensor element is a

phase shifted version of the signal received by the other

sensor elements. Finally an N-element beam forming system

is capable of forming up to N beams. For antenna array beam

forming the Least Mean Square (LMS) algorithm, one of the

most popular adaptive signal processing techniques is

adopted, because of its simplicity and robustness.

In this paper, Adaptive Digital Beam Forming (ADBF) has

been implemented using GNU Radio, which is a free

collection of signal processing blocks that can be used for

Radio Frequency (RF) real-time applications. It can act as a

stand-alone software package or as a backend to a hardware

device. Applications can be developed by using either Python

or C++. As the proposed application is time sensitive and

involves implementation of feedback, it is implemented in

C++ and connected in Python. Currently, GNU Radio is the

primary software platform supporting the drivers for the

USRP on a personal computer. The USRP‟s software defined

parameters (e.g. center frequency, PGA gain, interpolation

factor, decimation factor, and some transmit and receive path

multiplex options) can only be controlled using Python. The

host device can be any kind of signal processing device that

can be connected via USB 2.0 (e.g., any kind of signal

Digital Beam Forming Using Software Defined

Radio Based Adaptive Algorithm

P. Ragasudha, B. R. Vikram, K. Sridhar

Digital Beam Forming Using Software Defined Radio Based Adaptive Algorithm

 54 www.ijeas.org

processing system that includes components like General

Purpose Processors (GPP), Digital Signal Processors (DSP),

Field Programmable Gate Arrays (FPGA), or Application

Specific Integrated Circuits (ASIC), etc.). But when the C++

block is tested on host computer of speed 3GHz and 3GB

RAM the time for beam formation is 400 μsec. As RADAR

applications needs the beam to be formed with in hundreds of

nano-seconds, the beam former is implemented on FPGA

(cyclone II).

Fig. 1. Basic beam forming system.

Rest of the paper is divided in to four sections. Second

section consists of the explanation for Least Mean Square

algorithm. Third section introduces the software defined radio

platform. Results are presented and discussed in the fourth

section and the conclusions are presented in the last section.

II. LEAST MEAN SQUARE ALGORITHM

A. LMS Algorithm formulation

As shown in Fig. 2 the outputs of the individual sensors are

linearly combined after being scaled using corresponding

weights. This is done such that the antenna array pattern is

optimized to have maximum possible gain in the direction of

the desired signal and nulls in the direction of the interferers.

The weights here will be computed using LMS algorithm

based on Minimum Squared Error (MSE) criterion. Therefore

the spatial filtering problem involves estimation of signal

from the received signal (i.e. the array output) by minimizing

the error between the reference signal, which closely matches

or has some extent of correlation with the desired signal

estimate and the beam former output y(t) (equal to w(t)). This

is a classical Weiner filtering problem for which the solution

can be iteratively found using the LMS algorithm.

From the method of steepest descent, the weight vector

equation is given by

)})]({([
2

1
)()1(2 neEnwnw (1)

where μ is the step-size parameter and controls the

convergence characteristics of the LMS algorithm; e
2
(n) is the

mean square error between the beam former output y(n) and

the reference signal which is given by,

Fig. 2. Adaptive beam forming using LMS algorithm.

22)]()(*[)(nxwndne h (2)

The gradient vector in the above weight update equation can

be computed as

)(22)})({(2 nRwrneEw (3)

In the method of steepest descent the biggest problem is the

computation involved in finding the values r and R matrices in

real time. The LMS algorithm on the other hand simplifies

this by using the instantaneous values of covariance matrices r

and R instead of their actual values i.e.,

)()()(nxnxnR h (4)

)()(*)(nxndnR (5)

Therefore the weight update can be given by the following

equation,

)(*)()()1(

)]()()(*)[()()1(

nenxnwnw

nwnxndnxnwnw h

 (6)

The LMS algorithm is initiated with an arbitrary value w(0)

for the weight vector at n=0. The successive corrections of the

weight vector eventually leads to the minimum value of the

mean squared error.

Therefore the LMS algorithm can be summarized in

following equations;

Output, y(n)= w
h
x(n) (7)

Error, e(n) = d
*
(n) – y(n) (8)

Weight, w(n+1) = w(n) + μx(n)e
*
(n) (9)

B. Convergence and stability of LMS algorithm

The LMS algorithm initiated with some arbitrary value for

the weight vector is seen to converge and stay stable for

0 < μ < 1/λmax (10)

where λmax is the largest Eigen value of the correlation matrix

R.

The convergence of the algorithm is inversely proportional

to the Eigen value spread of the correlation matrix R. When

the Eigen values of R are widespread, convergence may be

slow. The Eigen value spread of the correlation matrix is

estimated by computing the ratio of the largest Eigen value to

the smallest Eigen value of the matrix. If μ is chosen to be

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-2, Issue-6, June 2015

 55 www.ijeas.org

very small then the algorithm converges very slowly. A large

value of μ may lead to a faster convergence but may be less

stable around the minimum value. One of the literatures also

provides an upper bound for μ based on several

approximations as μ <= 1/(3trace(R)). Also, the signal flow

and architecture for implementing LMS algorithm is shown in

Figs. 3 and 4 respectively.

Fig. 3. Signal flow for implementation of LMS algorithm.

 Fig. 3. Architecture for implementing LMS algorithm.

III. SOFTWARE DEFINED RADIO PLATFORM

Software radio is the technique of getting code as close to

the antenna as possible. It turns radio hardware problems into

software problems. In principle, a universal applicable

hardware serves as interface between the baseband and the

RF. The waveform of a transmitted signal is fully generated

through software, as well as a received signal is fully

processed and demodulated within software algorithms. In

SDR, the processing power required for signal processing is

sourced out to a universal host (PC). An important benefit for

industrial usage is the possibility to change complete

processing stacks or modulation schemes just with a software

update. This also saves costs and time for new hardware

developments.

A universal SDR structure with the specific software (GNU

Radio) and hardware (USRP) is shown in Fig. 3.

Fig. 3. Structure of SDR.

In Fig. 3, the Software-Defined Radio (SDR) structure is

divided into three blocks. The left one builds the RF frontend

of the hardware which serves as interface to the analog RF

domain. In the second block, the intelligence of the hardware

part is implemented, forming the interface between the digital

and the analog world. In the third block, the whole signal

processing is done - fully designed in software.

Getting more detailed, the interface to the analog world is

given as mentioned on left side of Fig. 3 An analog RF signal

can be received or transmitted over antennas, or can also be

directly connected via SMA connectors to the SMA ports of

RF frontend called daughter boards. The upper path (arrow

towards the daughterboard) marks the receive path (Rx), the

lower path describes the transmit path (Tx). Both paths can

operate autonomously. The possible operation frequency

range is very modular (from DC to 5.9 GHz), depending on

the available daughter boards for USRP/2. Daughter boards

form the RF frontend of USRP/2 and are connected to the

USRP/2 motherboard.

In USRP2 motherboard, an Analog to Digital Converter

(ADC) samples the received signal and converts it to digital

values depending on the ADCs dynamic range of 14 bit. The

digital sample values are transferred to the FPGA and

processed with Digital Down Converters (DDC) to meet

exactly the requested output frequency and sample rate. The

schematic of a DDC is shown in Fig. 4.

The digitized samples from ADC are mixed down to the

desired IF by being multiplied with a sine respectively cosine

function resulting in the „I‟ and „Q‟ path. The frequency is

generated with a Numerically-Controlled Oscillator (NCO)

which synthesizes a discrete-time, discrete-amplitude

waveform within the FPGA. Via the used NCO, very rapid

frequency hopping is feasible.

Afterwards a decimation of the sampling rate is performed

by an arbitrary decimation factor N. The sampling rate (fs)

divided by N results in the output sample rate, sent to host. In

transmit path, the same procedure is done vice versa using

Digital Up Converters (DUC) and Digital to Analog

Converters (DAC).

Digital Beam Forming Using Software Defined Radio Based Adaptive Algorithm

 56 www.ijeas.org

Fig. 4. Schematic of DDC.

The FPGA also supports time dependent applications

which e.g. use TDMA. A free running internal counter allows

incoming samples to be sent in strictly definable timestamps.

Regarding Fig. 4, data sampled by the FPGA are sent to the

host by USB or Gigabit Ethernet respectively what is used –

USRP or URSP2. Connected to the host computer, the GNU

Radio framework controls the further signal processing

capabilities. GNU Radio is an open source framework,

providing various pre-assembled signal processing blocks for

waveform creation and analysis in software radio

development. In the GNU Radio environment, Python and

C++ are used as main programming languages as well as a

signal flow application called GNU Radio Companion

(GRC).

A. Implementation of ADBF using GNU Radio

The Software-defined radios (SDRs) provide researchers

with a powerful and flexible wireless communications

experimentation platform. GNU Radio is the most popular

open-source software toolkit for deploying. Every SDR is

comprised of software and hardware. In this project GNU

Radio software coupled with Universal Software Radio

Peripheral (USRP) hardware is used. In GNU Radio, C++

blocks perform specific signal processing tasks, while Python

applications connect the blocks together to form a functional

software radio. For example, a basic transmitter can be

implemented by using Python to connect the following C++

blocks (which already exist in the GNU Radio software

library) together: modulator, mixer, and amplifier.

Each block specifies its input and output requirements,

both in number and type. For example, the gr_add_cc block

adds two complex input streams and copies the results onto

one complex output stream. Blocks are generally

implemented in C++ for computational efficiency.

After writing a new block, a process is needed to expose

these C++ blocks for use by Python scripts. GNU Radio uses

the Simplified Wrapper and Interface Generator (SWIG), to

generate the necessary components to make C++ blocks

accessible from Python. From the standpoint of Python

applications, each block consumes its input stream(s),

performs a specific task, and generates output stream(s). As

long as the connections between blocks are compatible, there

is no restriction to how many blocks can be chained

together. A single output stream can connect to multiple input

streams, but multiple outputs cannot connect to a single input

due to ambiguity. A multiplexer can be used in such a

situation by interleaving many inputs onto a single output.

In summary, the stages of block creation in GNU Radio are

the following:

1. Implementation of blocks in C++, (.h) and (.cc) files.

2. Creation of SWIG interfaces between C++/Python, the

(.i) file.

3. Installation of blocks into a shared library.

4. Usage of blocks in an application (Python), the (.py) file.

In order to select a sufficient word length and a range for

the various variables in the system, we should design the

proposed adaptive beam former accordingly. So, a MATLAB

simulation model of fixed-point adaptive beam former is used

in order to get the variables‟ representation with minimum

possible word length and sufficient partitioning between

integer part and decimal fraction, which results from model

tests with varying word lengths and decimal fractions. A bad

choice of a decimal fraction produces more quantization

noise. Table 1 shows the numerical ranges of the input

signals, the output signal, and the coefficients obtained by

simulation. Based on the ranges obtained, the locations of the

bits for the integer parts and those for the decimal fractions of

each variable are obtained.

Table 1: Numerical ranges of inputs and signals.

Variable

name
x d error w

Data

Range
(-10,10) (-10,10) (-10,10) (-0.3,0.3)

For the input signal in the range from -10 to 10, its whole

scale may use 4 bits, so the decimal fraction is located

between the 10
th

 bit and the 1
st
 bit. According to this location

method, the best precision can be obtained within the given

dynamic range. The selected number system is shown in

Tables 2, 3, 4 and 5.

Table 2: Data format of x and μ.

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Sign Integer Decimal fraction

Table 3: Data format of d.

31 30-24 23-0

Sign Integer Decimal fraction

Table 4: Data format of y and e.

47 46-39 28-0

Sign Integer Decimal fraction

Table 5: Data format of w.

31 30-26 27-0

Sign Integer Decimal fraction

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-2, Issue-6, June 2015

 57 www.ijeas.org

IV. RESULTS DISCUSSION

Fixed beam forming has been implemented for different

angles. Fixed weight vectors are computed in MATLAB and

presented in Table 6. Figs. 5 to 7 show the plots from

MATLAB for signal arriving angles of 10º, 30 º and 50 º.

GNU Radio Companion has all the necessary modules to

implement LMS algorithm, but adaptive algorithms cannot be

implemented with existing modules because python (used to

create flow graphs) doesn‟t support feedback loops. The

alternative to create loops in GNU Radio is to include loops in

C++ signal processing block. So, LMS algorithm has been

implemented in C++ as a module. Inputs to the module and

outputs from the module are vector format. Output is written

to a text file and plotted using GNU octave tool.

Table 6: weight vectors used for fixed beam forming.

Direction of

arrival angle

Direction of

Nulls
Weight vectors

10 40, 60

W0=1.0000

W1=0.6086 + 0.1406i

W2= 0.7602 + 0.5114i

W3=0.2374 + 0.8241i

W4=-0.0209 + 0.9436i

30 60, 90

W0=1.0000

W1= 0.1284 + 1.0178i

W2= -1.1418 + 0.1338i

W3= -0.0235 - 1.1666i

W4= 1.0766 + 0.0134i

50 10, 90

W0=1.0000

W1=-0.5610 + 1.0491i

W2=-0.6987 - 0.7409i

W3=0.8185 + 0.2250i

W4=-1.3704 + 0.3990i

-100 -80 -60 -40 -20 0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Fig. 5. MATLAB plot for signal arriving angle of 10o

-100 -80 -60 -40 -20 0 20 40 60 80 100
0

1

2

3

4

5

6
x 10

4

Fig. 6. MATLAB plot for signal arriving angle of 30o

-100 -80 -60 -40 -20 0 20 40 60 80 100
0

1

2

3

4

5

6
x 10

4

Fig. 7. MATLAB plot for signal arriving angle of 50o

Below (Fig. 8) is the screenshot after running “make

check”. Make check will run qa_howto.py (top level python

script) which interconnects the inputs to signal processing

blocks and outputs from signal processing block to a text file.

Fig. 8. Screen shot after running make_check (GNU).

The time taken to run the test is 0.004s. Here number of

samples in input vector file are 100. So it is taking 4 ms to run

100 samples. LMS algorithm takes 10 iterations to converge.

The total time for convergence of algorithm is 400 μs. Here

the execution is being carried out by CPU (2 GHz processor

and 3 GB RAM), so the convergence time varies depending

on the number of process handling by CPU.

Digital Beam Forming Using Software Defined Radio Based Adaptive Algorithm

 58 www.ijeas.org

GNU Octave is a high-level interpreted language, primarily

intended for numerical computations. It provides capabilities

for the numerical solution of linear and nonlinear problems,

and for performing other numerical experiments. Octave has

extensive tools for solving common numerical linear algebra

problems, finding the roots of nonlinear equations, integrating

ordinary functions, manipulating polynomials, and

integrating ordinary differential and differential-algebraic

equations. It is easily extensible and customizable via

user-defined functions written in Octave's own language, or

using dynamically loaded modules written in C++, C, Fortran,

or other languages. It also provides extensive graphics

capabilities for data visualization and manipulation. Octave is

normally used through its interactive command line interface,

but it can also be used to write non-interactive programs. The

Octave language is quite similar to MATLAB so that most

programs are easily portable.

The weight vectors are routed to a text file and beam is

plotted using GNU Octave and is presented in Fig. 10.

Fig. 9. Output signal plotted using GNU octave.

Fig. 10. Output beam plotted using GNU Octave.

V. CONCLUSION

Adaptive digital beam forming has been implemented in

GNU Radio, which is free software defined radio. The

languages used for programming in GNU Radio are C++ and

Python. Flow graphs are generally created using python but as

python doesn‟t support feedback/loops, Adaptive beam

forming is implemented using C++. For time critical

applications, this whole process can be implemented on

USRP FPGA after Down Conversion and resulting samples

can be sent to PC for further processing. The results

supporting the above discussed work are also presented.

REFERENCES

[1] Taniza Roy , Meena D. and LGM Prakasam, “FPGA based Digital

Beam Forming for Radars”, Radar conference, 2009 IEEE, pp.1-5,

May 2009.

[2] Asit Kumar Subudhi, Biswajit Mishra , Mihir Narayan Mohanty,

“VLSI Design and implementation of Adaptive filter using LMS

Algorithm”, International Journal of Computer & Communication

Technology (IJCCT), Volume-2, Issue-VI, 2011.

[3] K. R. Rekha , Dr B. S. Nagabushan and Dr K.R..Nataraj, “FPGA

Implementation of NLMS Algorithm for Identification of unknown

system”, International Journal of Engineering Science and

Technology, Vol. 2(11), 2010, 6391-6407.

[4] Tian Lan, Jinlin Zhang, “FPGA Implementation of an Adaptive Noise

Canceller”, 2008 International Symposiums on Information Processing

[5] Mohamed Salah, Abdel-Halim Zekry, Mohammed Kamel, “FPGA

Implementation of LMS Adaptive Filter”, 28th National Radio Science

Conference (NRSC 2011).

[6] Usha Mallaparapu, K. Nalini and P. Ganesh, “Non-blind adaptive

beam forming algorithms for smart antennas”, IJRRAS 6 (4), March

2011.

[7] Lilja P., Saarnisaari H, “Robust adaptive beam forming in software

defined radio with adaptive diagonal loading”, Military

communications Conference, 2005, MILCOM 2005, IEEE, 2596 -

2601 Vol. 4.

[8] Fertig L B, “Statistical performance of the MVDR beam forming in the

presence of diagonal loading”, Proceedings of 2010 IEEE Sensor Array

and Multichannel Signal Processing workshop, pp. 77-81, 2010.

[9] Kogon S M, “Eigen vectors, diagonal loading and white noise gain

constraints for robust adaptive beam forming”, proceedings of 37th

Asilomar conference on Signals, Systems and Computers, pp-

1853-1857, 2003.

[10] Gershman A B, “Robust adaptive beam forming: An overview of

recent trends and advances in the field”, proceedings of international

conference on Antenna Theory and techniques, pp. 30-35, 2003.

[11] GNU Radio User Manual by Firas Abbas.

[12] Matt Ettus, Ettus Research LLC, USRP User‟s and developers‟ guide.

[13] G. Liang, W. B. Gong, H. J. Liu, and J. P. Yu, “Development of

61-channel digital beam-forming (DBF) transmitter array for mobile

satellite communication”, Progress In Electro-magnetics Research,

PIER 97, 177-195, 2009.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10687
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10687
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10687

