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Abstract— Here, we investigate a different hybrid neural 

network method for the design of airfoil using inverse 

procedure. The aerodynamic force coefficients corresponding to 

series of airfoil are stored in a database along with the airfoil 

coordinates. A feedforward neural network is created with 

input as a aerodynamic coefficient and the output as the airfoil 

coordinates.  In existing algorithm as an FNN training method 

has some limitation associated with local optimum and 

oscillation. The cost terms of the first algorithm are selected 

based on the activation functions of the hidden neurons and first 

order derivatives of the activation functions of the output 

neurons. The cost terms of the second algorithm are selected 

based on the first order derivatives of the activation functions of 

the hidden neurons and the activation functions of the output 

neurons. Results indicate that optimally trained artificial neural 

networks may accurately predict airfoil profile. 

 

 

Index Terms— nonlinear error, airfoil design, neural 

networks, backpropagation, hybrid, inverse design. 

 

I. INTRODUCTION 

  This paper focuses on the comparative analysis of hybrid 

methods. In order to develop aircraft components and 

configurations, automated design procedures are needed. At 

present, there are two main approaches to the design of 

aircraft configurations. The first is direct optimization, where 

an aerodynamic object function, such as the pressure 

distribution is optimized computationally by gradually 

varying the design parameters, such as the surface geometry. 

The second is the inverse design methods. Here, a two 

dimensional airfoil profile is obtained for the given 

coefficient of lift (CL) and the coefficient of drag(CD). 

But the back propagation takes long time to converge the 

computational effort can therefore be excessive. Some 

focused on better function and suitable learning rate and 

momentum (18-22). Details on the use of numerical 

optimization in aerodynamic design can be found in works by 

Hicks and other authors. (1-3). in inverse design methods, the 

aim is to generate geometry for airfoil. There are many 

inverse techniques in use, for example, hodo-graph methods 

for two dimensional flows (4-6) and other two dimensional 

formulations using panel methods (7-8). The above 

methodologies have been extended to the three dimensional 

case (12-14). To design fast algorithm, Abid et al. proposed a 

new algorithm by minimizing sum of squares of linear and 

nonlinear errors for all output (22). Kathirvalavakumar 

proposed new efficient learning algorithm for training ANN 

(21). The hidden layer and output layer was trained 
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separately to speed up the convergence. Many constrained 

learning algorithm with functional constraints into neural 

networks have been proposed (24). Jeong et al. proposed 

learning algorithm based on first and second order 

derivatives of neural activation at hidden layers (23). 

Han et al. proposed two modified constrained to obtain faster 

convergence (25). The additional cost terms of the first 

algorithm are selected based on the first order derivatives of 

the activation functions of the hidden neurons and second 

order derivatives of the activation of the output neurons. 

Second one are selected based on the second order 

derivatives of the activation functions of the hidden neurons 

and first order derivatives of activation functions of the 

output neurons. High order techniques have one goal in 

mind; to increase the speed with which back propagation 

converges to optimal weights(16). HONNs lead to faster 

convergence, reduced network size and more accurate curve 

fitting, compared to other types of more complex NNs. 

The objective of this work is to show that different hybrid 

neural network method for the design of airfoil using inverse 

procedure. The cost terms of the first algorithm are selected 

based on the activation functions of the hidden neurons and 

first order derivatives of the activation functions of the output 

neurons. The cost terms of the second algorithm are selected 

based on the first derivatives of the activation functions of the 

hidden neurons and the activation functions of the output 

neurons. In existing algorithm as an FNN training method has 

some limitation associated with local optimum and 

oscillation. Results indicate that optimally trained artificial 

neural networks may accurately predict airfoil profile 

II. ANN TRAINING METHOD 

 

 

 

 

 

 

 

 

Figure 1.Schematic Diagram for a Simple Neuron 

An easy way to comply with the conference paper formatting 

requirements is to use this document as a template and simply 

type your text into it. Here, ni is called the state or activation 

of the neuron i.g() is a general non linear function called 

variously the activation-function. The weight wij represents 

the strength of the connection between neurons i and j. µi is 

the threshold value for neuron i, the general architecture of a 

two layer neural network with feed-forward connections and 

one hidden layer is shown in Figure3. The input layer is not 

included in the layer count because its nodes do not 

correspond to neural elements. The weighted sum of the 

inputs must reach the threshold value for the neuron to 
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transmit. One drawback associated with neural networks is 

that it is normally very difficult to interpret the values of the 

connecting weights wij in terms of the task being 

implemented. 

Neural networks offer a very powerful and general 

framework for representing nonlinear mappings from several 

input variables to several output variables. Since the goal is 

to produce a system which makes good predictions for new 

data. Training generally involves minimization of an 

appropriate error function defined with respect to the training 

set. Learning algorithms such as the back-propagation 

algorithm for feed-forward multilayer networks (16) help us 

to find such a set of weights by successive improvement from 

an arbitrary starting point.An airfoil profile can be described 

by a set of x- and y-coordinates, as illustrated in figure2.  

 

  

III. PAGE STYLE 

 

 

 

 

FIGURE 2. FLOW FIELD AND AIRFOIL DATA 

 

 

 

 

 

 

 

 

 

Figure3. The Neural-Network  Trained to Predict  

Y-coordinates and Cl, Cd and X Coordinates are the inputs 

 

The aerodynamic force coefficients corresponding to series 

of airfoil are stored in a database along with the airfoil 

coordinates. A feedforward neural network is created with 

input as a aerodynamic coefficient and the output as the 

airfoil coordinates. This is then trained to predict the 

corresponding surface y-coordinates We used the below 

sigmoidal activation function to generate the output. 

              

  (1)  

For a neuron j at output layer L, the linear outputs given by 

Abid et al. is 

 (2) 

Where wji is the weight connection between the output 

neuron j and hidden neuron i. And  is the output of neuron 

i at hidden layer H.And the non linear output given by Abid et 

al. is 

 (3) 

The non linear error is given by 

 (4) 

Where  and  respectively is desired and current output 

for jth unit in the Lth layer.  

To achieve low input and output mapping the error must be 

reduce by derivative of cost function When the value of   

becomes larger. This procedure, the dependence of the 

learning function is on the instantaneous value of the total 

error thereby leading to faster convergence. 

 

Cost function for first algorithm  

 

Now, the weight update rule for the output layer is derived by 

applying the gradient descent method to Ep. Hence we get 

weight update rule for output Layer L as 

     

Where   is the network learning paramater 

 

 

 (5) 

And we get the weight update rule for the hidden layer H as 

  

(6) 

Cost function for second algorithm 

 

    (7) 

And we get the weight update rule for the hidden layer H as 

  

    (8) 

The network learning parameter µ is initialized, which plays 

an important role in minimizing the error. Then the network 

is trained with corresponding change of weight for both 

hidden and output layer.   

 

Proposed Algorithm 

 

In the Proposed Algorithm the network learning parameter  

is first initialized. Here, the change of weight for output layer 

and hidden layer is determined using new cost function 

equation (5)and (6) respectively. 
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Step1: Initialize the parameter  to some random values 

Step2: Assign Threshold value to a fixed value based on the 

sigmoid function. 

Step3: Calculate linear output using equation (2) 

Step4: Calculate Non-Linear output using sigmoid function 

as in the equation (3) 

Step5: Calculate the below values for output layer 

            Calculate weight change for output layer using the 

equation (5) 

Step6: Calculate the below values for hidden layer 

           Calculate the weight change for hidden layer using the 

equation (6) 

Step7: Calculate the mean square error 

Step8: If the mean square error value is greater than threshold 

value, then the above steps from 3 to 7 is repeated 

Step9: If the mean square error value is less than threshold 

value, then declare that the network is trained 

 

IV. RESULTS AND DISCUSSION 

 

All paragraphs must be indented.  All paragraphs must be 

justified, i.e. both left-justified and right-justified. In our 

investigation of neural network models for inverse design, we 

found that satisfactory results were obtained by the cost terms 

selected based on the activation functions of the hidden 

neurons and first order derivatives of the activation functions 

of the output neurons. In our case, it was found that twenty 

hidden nodes could adequately capture the nonlinear 

relationship between the airfoil profiles. As mentioned 

previously we have a database comprised of 26 upper and 

lower-surface x and y coordinates, together with the 

corresponding coefficient of lift(CL) and the coefficient of 

drag(CD). There were 78 patterns in total. The main goal is to 

determine the airfoil profile for a given conditions. This is the 

"inverse" problem. 

 

The network was trained to minimum error (using 60 training 

patterns) on a test set (comprising 18 patterns) which was not 

used in the training process. The computed profiles show 

good agreement with the actual profiles. The new airfoil is 

tested again for the same flow conditions in XFoil tool to 

compare Cl, Cd. In Table I, we have given the values of 

stored y coordinates, the values of calculated y coordinates 

for a pattern and also the difference between these values. 

 

  Just for sample, we have given 7 coordinates out of 26 

coordinates for a pattern.  From this table, we can say that the 

computed profiles generated during the test process show 

good agreement with the actual profiles.   

 

Table I - Profile Comparison between Calculated & Stored Y 

Coordinates 

Y coordinate in 

database 

Y coordinate 

calculated using 

proposed 

algorithm in test 

phase 

Difference 

0.003391 0.00351 -0.00012 

0.009775 0.00934 0.000435 

0.018689 0.0182 0.000489 

0.03154 0.02907 0.00247 

0.046256 0.0408 0.005456 

0.057878 0.05215 0.005728 

0.068702 0.06176 0.006942 

0.076115 0.06817 0.007945 

 

Next we compute the convergence rate at training phase. To 

do this, we noted down the MSE error at each epoch and 

plotted it in the graph in Figure4.  The red line indicates the 

errors of first algorithm converge. It is clear that first 

algorithm converges quickly and in this approach the error is 

less at the converging stage. It shows how the training 

decreases mean square Error (MSE) with the epoch.  From 

this figure it is obvious that the first algorithm increase the   

converges speed and without oscillation of learning.  

 

 

 

 

 

 

 

 

 

Figure4. Convergence Comparison 

 

Next the error in each epoch obtained from first algorithm 

and second algorithm are compared and tabulated in 

Table-II. From this table, it is clear that the first algorithm 

predicted approximately correct airfoil without oscillation in 

learning.  This proves that the proposed approach results in 

less error and takes less time to predict the airfoil for the 

given CL & CD.   

 

Table II - Comparison Table 

 

First Alg. Second Alg 

Epoch MSE Epoch MSE 

0 3.086162 0 3.606326 

600 0.001808 600 0.002952 

1200 0.001684 1200 0.002036 

1800 0.001618 1800 0.00179 

2400 0.001562 2400 0.001674 

3000 0.0015 3000 0.001609 
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3600 0.001422 3600 0.001564 

4200 0.001313 4200 0.001533 

4800 0.001157 4800 0.001511 

5400 0.000963 5400 0.001494 

6000 0.000752 6000 0.00148 

6600 0.000537 6600 0.001456 

7200 0.000363 7200 0.001444 

7800 0.000226 7800 0.001435 

8400 0.000155 8400 0.001428 

9000 0.000117 9000 0.001335 

    9600 0.001298 

    10200 0.001285 

    10800 0.001277 

    11400 0.00127 

    12000 0.001263 

    12600 0.001257 

    13200 0.001251 

    13800 0.001245 

    14400 0.001238 

    15000 0.001232 

    15600 0.001226 

    16200 0.001219 

    16800 0.001213 

    17400 0.001207 

    18000 0.0012 

    18600 0.001193 

    19200 0.001187 

    19800 0.00118 

    20400 0.001173 

    21000 0.001166 

    21600 0.001159 

    22200 0.001152 

    22800 0.001145 

    23400 0.001138 

    24000 0.00113 

    24600 0.001123 

    25200 0.001115 

    25800 0.001108 

    26400 0.0011 

 

Figure5 contains the airfoils naca2013, naca2012 and 

naca1017 which are generated by proposed algorithm in test 

phase.  From this figure, we can say that profile generated 

from proposed algorithm in test phase matches with that of 

stored database profiles.  A measure of the accuracy of the 

results obtained can be inferred from examination of error 

which is defined as 

 

 

 

Table III - Maximum Error for Airfoil Profiles Generated by 

Proposed Algorithm. 

 

Airfoil Maximum error (%) 

NACA2013 0.001798 

NACA2012 0.001495 

NACA1017 0.003779 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure5. Proposed Alg. generated Airfoils 

 

 

Where  is the actual y-coordinate of the section at 

location i,  is the computed y-coordinate. 

Table-III shows the maximum error in percentage for the 

airfoil profiles naca2013, naca2012 and naca1017 which are 

generated by proposed algorithm in test phase.  From this 

table III, we can conclude that  our approach predicated 

comparatively the correct airfoil profiles. 
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V.  CONCLUSIONS 

In this paper, we have used an inverse design methodology 

using artificial neural networks which is used for the design 

of airfoil profiles. The results indicate the cost function of 

first algorithm increase the convergence speed. In the 

proposed algorithm the cost terms are selected based on the 

activation functions of the hidden neurons and first order 

derivatives of the activation functions of the output neurons. 

Results indicate that optimally trained artificial neural 

networks may accurately predict airfoil profile without 

oscillation in learning 
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