

International Journal of Engineering and Applied Sciences (IJEAS)

ISSN: 2394-3661, Volume-2, Issue-3, March 2015

 16 www.ijeas.org



Abstract— The increasing dependence on web applications

has made them a natural target for attackers. Among these

attacks SQL Injection Attacks (SQLIA) and Cross-Site

Scripting attacks are the most prevalent. Our SQL Injection

detection method is based on the design of a detection tool for

the HTTP request send by clients or users and look for attack

signatures. The proposed filter is generic in the sense that it can

be used with any web application. Finally we test our proposed

security mechanism using the vulnerability scanner developed

by us as well as other well-known scanners. Our approach for

Cross-Site Scripting detection method describes the possibilities

to filter JavaScript in Web applications in server side protection.

Server side solution effectively protects against information

leakage from the user’s environment. Cross-Site scripting

attacks are easy to execute, but difficult to detect and prevent.[1]

Index Terms— SQL Injection, Cross-Site scripting, scanner,

signature, vulnerability.

I. INTRODUCTION

 The security of Web applications has become increasingly

important in the last decade. More and more Web based

enterprise applications deal with sensitive financial and

medical data, which, if compromised, in addition to downtime

can mean millions of dollars in damages. It is crucial to

protect these applications from hacker attacks. A great deal of

attention has been given to network level attacks such as port

scanning, even though, about 75% of all attacks against Web

servers target Web-based applications, according to a recent

survey. Traditional defense strategies such as firewalls do not

protect against Web application attacks, as these attacks rely

solely on HTTP traffic, which is usually allowed to pass

through firewalls unhindered. Thus, attackers typically have a

direct line to Web applications. Many projects in the past

focused on guarding against problems caused by the unsafe

nature of C, such as buffer overruns and format string

vulnerabilities. However, in recent years, Java has emerged as

the language of choice for building large complex Web-based

systems, in part because of language safety features that

disallow direct memory access and eliminate problems such

as buffer overruns. According to the OWASP survey made

SQL Injection and XSS are the top two vulnerabilities found

in web application[1,2].

Priti Singh, IT Department, Mumbai University SIES Graduate School

Of Technology, Nerul, India

Kirthika Thevar, IT Department, Mumbai University SIES Graduate

School Of Technology, Nerul, India

Pooja Shetty, IT Department, Mumbai University SIES Graduate

School Of Technology, Nerul, India

Bushra Shaikh, IT Department, Mumbai University SIES Graduate

School Of Technology, Nerul, India

II. D-WAV: DETECTION OF WEB APPLICATION

VULNERABILITY

A. What is SQL Injection Attack?

A SQL injection attack consists of insertion or "injection"

of a SQL query via the input data from the client to the

application. A successful SQL injection exploit can read

sensitive data from the database, modify database data

(Insert/Update/Delete), execute administration operations on

the database (such as shutdown the DBMS), recover the

content of a given file present on the DBMS file system and in

some cases issue commands to the operating system. SQL

injection attacks are a type of injection attack, in which SQL

commands are injected into data-plane input in order to effect

the execution of predefined SQL commands.[1]

SQL Injection Types:

1) UNION ATTACK:

By this technique, attackers join injected query to the safe

query by the word UNION and then can get data about other

tables from the application. Suppose for our examples that the

query executed from the server is the following: SELECT

Name, Phone FROM Users WHERE Id=$id By injecting the

following Id value: $id= 1 UNION ALL SELECT

creditCardNumber, 1 FROM CreditCarTableWe will have

the following query: SELECT Name, Phone FROM Users

WHERE Id= 1 UNION ALL SELECT creditCardNumber, 1

FROM CreditCarTable which will join the result of the

original query with all the credit card users[1].

2) BLIND INJECTION:

Sometimes developers hide the error details which help

attackers to compromise the database. In this situation

attacker face to a generic page provided by Developer, instead

of an error message. So the SQLIA would be more difficult

but not impossible. An attacker can still steal data by asking a

series of True/False questions through SQL statements.

Consider two possible injections into the login field: SELECT

accounts FROM users WHERE login='doe' and1 =0 -- AND

pass = AND pin=O SELECT accounts FROM users WHERE

login='doe' and1 = 1 -- AND pass = AND pin=O

If the application is secured, both queries would be

unsuccessful, because of input validation. But if there is no

input validation, the attacker can try the chance. First the

Attacker submit the first query and receives an error message

Detection of SQL Injection and XSS Vulnerability in

Web Application

Priti Singh, Kirthika Thevar, Pooja Shetty, Bushra Shaikh

Detection of SQL Injection and XSS Vulnerability in Web Application

 17 www.ijeas.org

because of "1=0". So the attacker does not understand the

error is for input validation or for logical error in query. Then

attacker submits the second query which always true. If there

is no login error message, then the attacker finds the login

field vulnerable to injection.[1]

3) ERROR-BASED ATTACK:

An Error based exploitation technique is useful when the

tester for some reason can’t exploit the SQL injection

vulnerability using other technique such as UNION. The

Error based technique consists in forcing the database to

perform some operation in which the result will be an error.

The point here is to try to extract some data from the database

and show it in the error message. This exploitation technique

can be different from DBMS to DBMS.

Consider the following SQL query: SELECT * FROM

products WHERE id_product=$id_product Consider also the

request to a script who executes the query above:

http://www.example.com/product.php?id=10 The malicious

request would be (e.g. Oracle 10g):

http://www.example.com/product.php?id=10||UTL_INADD

R.GET_HOST_NAME((SELECT user FROM DUAL))--

In this example, the tester is concatenating the value 10

with the result of the function

UTL_INADDR.GET_HOST_NAME. This Oracle function

will try to return the host name of the parameter passed to it,

which is other query, the name of the user. When the database

looks for a host name with the user database name, it will fail

and return an error message like: ORA-292257: host SCOTT

unknown[3]

B. What is Cross-Site Scripting?

Cross-Site Scripting (XSS) attacks occur when:

1. Data input in Web application through an untrusted

source, mainly a web request.

2. The data is included in dynamic content that is sent to a

web user as HTTP Response without being validated for

malicious script.

The malicious content sent to the web browser is a piece of

JavaScript, but it may also include HTML or any other type of

code that the browser may able to execute. The variety of

attacks based on XSS is very vast, but commonly they include

transmitting confidential data like cookies or other essential

session information to the attacker, redirecting the victim to

web content controlled by the attacker, or performing other

malicious operations on the user's machine under the

appearance of the vulnerable site.[4]

C. Existing System

Existing system used to identify bugs in source code often

return large numbers of false positive warnings to the user.

True positive warnings are often buried among a large number

of distracting false positives. By making the true positives

hard to find, a high false positive rate can frustrate users and

discourage them from using an otherwise helpful tool. The use

of historical data mined from the source code revision history

can be useful in refining the output of a bug detector by

relating code flagged by the tool to code changed in the past.

D. Proposed System

In our proposed system, we propose a SQL Injection

Detection method which is based on designing a Detection

tool for the HTTP request send by clients or users and look for

attack signatures. The proposed tool is generic in the sense

that it can be used with any web application. Finally we test

our proposed security mechanism using the vulnerability

scanner developed by us as well as other well-known

scanners. Our second approach for Cross-Site Scripting

detection method describes the possibilities to filter

JavaScript in Web applications in server side protection.

Server side solution effectively protects against information

leakage from the user’s environment. Cross-Site scripting

attacks are easy to execute, but difficult to detect and

prevent.[1,4]

E. System Architecture

Figure1. Proposed System Architecture

III. WORKING

A. DETECTION OF ATTACKS

Figure2. SQL Injection and XSS Detection Architecture

International Journal of Engineering and Applied Sciences (IJEAS)

ISSN: 2394-3661, Volume-2, Issue-3, March 2015

 18 www.ijeas.org

Our tool checks for SQL injection vulnerabilities in the

following steps.

1) Crawling the whole web application

For finding the input points we first explore the whole web

application. In order to examine the entire web application it

is designed in the form of a tree. Figure3 shows the tree

structure of web application where a.php is the home or index

page and the other pages are child nodes. After construction

of the tree the pages are visited all the links are displayed in

the working log.

Figure3. Tree structure of web application[1]

2) Scanning the whole web application

The tool examines the URL of each visited and tries to

identify the input points. If the page accepts user inputs then it

is tagged as a vulnerable point. For example, if we get an URL

like http://xyz.ac.in/departments/cse/csecourses.html then we

can say that, in this page we do not have any vulnerable

points. But if the URL is like

http://xyz.site.com/product.php?product_id=10 then we can

say product_id takes part in generation of a SQL query which

may be of the form: SELECT * FROM product WHERE

product_id=10. In this query product_id is the parameter and

value is 10. Also if the URL is

http://xyz.site.com/product.php?product_id=10 then we can

say product_id takes part in generation of a XSS attack using

script tag. The parameter element is always fixed but an

attacker can freely alter the value element. Thus this URL has

a vulnerable point.

3) Generate Attack and Report

The final step is to inject the attack codes at the vulnerable

spots identified in the last step and report the outcome of the

attack

3.1) Payload Setup

In this phase the attack payload is created based on the

prevalent SQLI attacks and XSS attack. For generating the

payload we created a list of the common SQL Injections and

XSS attack which are used by attackers. The response of an

attack will differ depending on the underlying database.

3.2) Generating Attack

In this phase we generate the attack by concatenating the

attack payload with the original query URL of the web

application, and make request of this specially crafted attack

URL.

By sending different specially crafted attack request the

proposed scanner checks if SQL injection and XSS

vulnerabilities lie in a web application or not. For checking

vulnerability we have defined a payload setup in which we

have stored the attacks pattern related to different injection

attack. We generate the attack request by appending attack

pattern with the URL. After putting the attack request our tool

automatically checks the response if there exist any

vulnerability or not. If any vulnerability is found in the

content of the response page then we can say that vulnerability

exists in the input point of this page.

3.3) Generating Report

If any vulnerability exists in the web application, then a pdf

report is generated indicating the date and time, the domain

name and the SQL and XSS attacks found .

Figure4. Flowchart for SQL Injection and XSS Detection

IV. SYSTEM ANALYSIS

 Functional Requirements

The D-WAV detection tool should be able to detect SQL

Injection and Cross-site scripting attacks in any given web

application. This tool will help the user to perform secure

online transactions through web application.

V. INTENDED USE

 A. EXPECTATIONS

The D-WAV detection tool should provide security to Web

Applications by detecting the vulnerabilities such as SQL

Injection and Cross-site scripting attacks. The tool is useful in

securing the database of the web application.

 B. CHALLENGES

The D-WAV detection tool should be designed in such a

way that even a common man should be able to understand the

process without any ambiguity. More and more web based

Detection of SQL Injection and XSS Vulnerability in Web Application

 19 www.ijeas.org

enterprise applications deal with sensitive financial and

medical data, which, if compromised, in addition to downtime

can mean millions of dollars in damages. The hackers should

not be able to cut short the performance of these web

applications in any manner. Detecting the vulnerabilities in

the web applications is the major challenge.

SYSTEM REQUIREMENTS

The software requirements identified for developing the

application are JDK 1.7, Eclipse and APACHE TOMCAT as

server.

A. SOFTWARE REQUIREMENTS

1. ECLIPSE

In computer programming, Eclipse is an integrated

development environment (IDE). It contains a base

workspace an extensible plug-in system for customizing the

environment. Written mostly in Java, Eclipse can be used to

develop applications. Eclipse is a multi-language software

development environment comprising a workspace and an

extensible plug-in system. It is written mostly in Java. It can

be used to develop applications in Java and, by means of

various plug-in, other programming languages.[5]

2. WINDOWS OS

Windows OS, computer operating system (OS) developed

by Microsoft Corporation to run personal computers (PCs).

Featuring the first graphical user interface (GUI) for

IBM-compatible PCs, the Windows OS soon dominated the

PC market. Approximately 90 percent of PCs run some

version of Windows. The first version of Windows, released

in 1985, was simply a GUI offered as an extension of

Microsoft’s existing disk operating system, or MS-DOS. [6]

 3. APACHE TOMCAT

Apache Tomcat is an open source software implementation

of the Java Servlet and Java Server Pages technologies. The

Java Servlet and Java Server Pages specifications are

developed under the Java Community Process. Apache

Tomcat is developed in an open and participatory

environment and released under the Apache License version

2. Apache Tomcat is intended to be a collaboration of the

best-of-breed developers from around the world.[5]

B. HARDWARE REQUIREMENTS

 Intel Pentium 4 processor or higher.

 Minimum RAM of 512mb.

 Free disk space of 16GB or more.

 1024 x 768 resolution monitor.

C. TECHNOLOGY

 JAVA

Java was originally called OAK, and was designed for

handheld devices and set-top boxes Java is an object-oriented

language similar to C++, but simplified to eliminate language

features that cause common programming errors Java is a

general purpose programming language with a number of

features that make the language well suited for use on the

World Wide Web. Small Java applications are called Java

applets and can be downloaded from a Web server and run on

your computer by a Java-compatible Web browser, such as

Netscape Navigator or Microsoft Internet Explorer.[7]

D. DESIGN AND IMPLEMENTATION ISSUES

One major issue in the design and implementation was that

if the attack pattern stored in our code is not correct then tool

will not be able to detect the attack successfully. Also if the

hacker performs any new type of attack of which the pattern is

not stored in our code then the tool will not be able to detect

that attack.

VI. RESULT

A. SQL INJECTION DETECTION

Figure5. Crawler of SQL Injection detection

Figure6. Working log of SQL Injection detection

International Journal of Engineering and Applied Sciences (IJEAS)

ISSN: 2394-3661, Volume-2, Issue-3, March 2015

 20 www.ijeas.org

Figure7. Vulnerabilities displayed in the working log

 B. CROSS-SITE SCRIPTING DETECTION

Figure8. Proxy Setting

Figure9. Crawler of XSS detection

Figure10. Working log of XSS detection

Figure11. Working log of XSS detection

Figure12. Alert Box displayed on generation of XSS attack

Detection of SQL Injection and XSS Vulnerability in Web Application

 21 www.ijeas.org

Figure13. Web page redirected to another link on generation

 of XSS attack

Figure11. Pdf Report generated when the vulnerabilities

are detected in the web application

VII. FUTURE ENHANCHEMENTS

Due to the issues with the chosen technology and the

development process, the development team has decided to

include more attack patterns for the better performance.

VIII. CONCLUSION

The objective of the project is to detect SQL Injection and

Cross-site Scripting attacks by checking the URL of the web

application and thus provides security to web application by

detecting the attacks.

ACKNOWLEDGEMENT

The author wishes to thank our guide for helping out to

come up with the initial idea and guiding us to proceed further

in the project. Also would like our project HOD for giving us

the opportunity to do this project.

REFERENCES

[1] Sangita Roy, Avinash Kumar Singh and Ashok Singh Sairam, senior

member IACSIT “Detecting and Defeating SQL Injection Attacks

“International Journal of Information and Electronics Engineering, Vol.

1 , No. 1 , July 2011”.

[2] OWASP (Open Web Application Security Project)

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

visited on August 2014.

[3]https://www.owasp.org/index.php/Testing_for_SQL_Injection_(OTG-IN

PVAL-005) visited on November 2014

[4] Sudhir S. Dhekane1, Prof. V. B.Gaikwad2,” XSS Detection in Web

Request and Server Response” International Journal of Emerging

Technology and Advanced Engineering Website: www.ijetae.com

(ISSN 2250-2459,ISO 9001:2008Certified Journal, Volume 4, Issue 4,

April 2014)

[5] http://en.wikipedia.org/wiki/Eclipse_(software) visited on September

2014.

[6]http://www.britannica.com/EBchecked/topic/645197/Windows-OS

visited on September 2014.

[7] http://www.webopedia.om/TERM/J/Java.html visited on September

2014.

[8] A. Duraisamy, M.Sathiyamoorthy, S.Chandrasekar, ” A Server Side

Solution for Protection of Web Applications from Cross-Site Scripting

Attacks.” International Journal of Innovative Technology and Exploring

Engineering (IJITEE) ISSN: 2278 - 3075, Volume-2, Issue-4, March

2013

[9] Atefeh Tajpour, Maslin Masrom, Mohammad Zaman Heydari, Suhaimi

Ibrahim,”Evaluation of SQL Injection Detection and Prevention

Techniques,”2nd International Conference on Computational

Intelligence,Communication Systems and Networks, Liverpool,

UnitedKingdom. 216-221.

