

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-2, Issue-2, February 2015

 37 www.ijeas.org



Abstract— As the use of internet technologies are widely

increasing, the XML markup language attains a remarkable

importance due to its language neutrality and independency in

using data exchange and data transfer through web

environment mechanism. For improving the processing

performance of XML parser, it is necessary to find out a

mechanism, in which we get minimum processing time while

parsing of XML documents.

In this paper, XML documents are being experimentally

tested using various operating systems to determine, whether an

operating system effect the processing time of XML parsing.

Index Terms— XML Parser, DOM Parser, Operating

system.

I. INTRODUCTION

 In Present world, mega information are sharing and

transmitting, In this XML plays a very significant role as a

worldwide design for data interchange. It allows users to

share XML documents. XML is capable to the mining of data

from an XML document without any facts or knowledge

about the contents of that. XML documents need to be

conformant with XML specifications for achieving this

transparency. By using an XML parser, this specification

conformance can be checked. The parser makes the data easy

to get and also ensures the validity of that.

In today’s, a large number of XML parsers, coded in a verity

of languages, May be these parser not give the similar

performance in terms of parsing speeds, accuracies, and

storage requirements. This is lastly proofed that, for execution

time savings, accurate parsing, and storage requirements, a

parser must be selected to fit those specific requirements.

In this study, XML document will be tested with three DOM

API, i.e. PHP,JAVA and Microsoft on various Operating

Systems like WIN7, WIN8, UBUNTU, Red Hat, etc. The

main objective of this study is to check whether the operating

system affects the parsing speed and if yes then the best

combination of parser and operating system will be also

finding out.

II. TECHNOLOGY OVERVIEW

In this section we describe about different XML Parsers.

A. XML Parser

A parser is a piece of program that takes a physical

representation of some data and converts it into an

in-memory form for the program as a whole to use. Parsers are

 Amitesh Saxena, Research Scholar of Pacific University, Udaipur

 Dr. Snehlata Kothari, Pacific University, Udaipur.

used everywhere in software. An XML Parser is a parser that

is designed to read XML and create a way for programs to use

XML. There are different types, and each has its advantages.

Unless a program simply and blindly copies the whole

XML file as a unit, every program must implement or call on

an XML parser.

B. DOM (Document Object Model)

It supports navigating and modifying XML documents

- Hierarchical tree representation of document

- Tree follows standard API

- Creating tree is vendor specific

DOM is a language-neutral specification

- Binding exist for Java, C++, CORBA, JavaScript, C#

- can switch to other language.

The Document Object Model (DOM) is

an interface-oriented application programming interface that

allows for navigation of the entire document as if it were a tree

of node objects representing the document's contents. A

DOM document can be created by a parser, or can be

generated manually by users (with limitations).

III. LITERATURE REVIEW

Review of work already done on the subject

A study of various XML parsers could be very positive in

determining the strengths and weaknesses of various XML

parsers in respect to the different features of XML. Parsers

can be compared to one another by checking their

conformance with the XML recommendations [1] given by

the World Wide Web Consortium. The Organization for

Advancement of Structured Information Systems (OASIS) [2]

is a NGO that has collected a number of test cases from

various sources and built a Conformance Test Suite for XML

with approx. 2000 test cases (as of November 6, 2001).

Anez [3]. 1999, conducted a study to determine the suitability

of XML and Java for the representation and manipulation of

Transport and Land Use (TLU) modeling information as used

in urban and regional planning. This study evaluated seven

different XML parsers with respect to conformance with

XML specifications, speed and memory usage. In this study,

the test suite developed by James Clark (currently part of

OASIS Test Suite) was used for checking the conformance of

different parsers. Speed and memory usage tests were

performed using two large XML files (0.8 and 1.2 MB,

respectively). Each of these two files contained several

thousand XML elements nested in a four-level deep

hierarchy, and all of the elements had one or more attributes.

The study concludes by giving rankings to the different

parsers as shown in Table 1.

An Empirical Analysis of XML parsing using various

operating systems.

Amitesh Saxena, Dr. Snehlata Kothari

http://en.wikipedia.org/wiki/Document_Object_Model
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Node_(computer_science)
http://en.wikipedia.org/wiki/Object_(computer_science)

An Empirical Analysis of XML parsing using various operating systems.

 38 www.ijeas.org

Table 1: Rankings for different parsers by Anez [3]

Parser Rank

IBM XML4J (XML for java) v

1.1.4

Outstanding

James Clark’s XP v0.4 Good

Microsoft XML (MSXML) v

1.9

Good

Microstar Aelfred v1.1 Good

Sun XML (under construction) Acceptable

Loria sxp v 0.72 Acceptable

Data Channel XML parser Poor

This study also compares the relative performances of the

parsers with respect to conformance with XML

recommendations, speed, and memory usage. It concludes

that different parsers excel under different requirements.

However, this study does not provide quantitative data about

the conclusions.

Claben [4]. 1999, considered the following parsers: IBM

XML4J, Apache Xerces, Sun Project X, Microsoft MSXML,

Oracle XML parser for Java, and James Clark XP. He used

the following features for comparing the different parsers:

Well-formedness, Validity, XML Schema, Namespaces,

XSL-T, SAX levels 1, 2, and DOM levels 1, 2. The focus of

this study was to determine the set of features supported by

each of the parsers using the OASIS Conformance Test Suite

(1000 test cases1). The study concludes that Sun's parser and

James Clark XP are the best parsers supporting the XML

standard, but it does not give any quantitative figures of how

good or bad each parser is with respect to a specific feature.

Cooper [5], 1999 studied how parsing speeds vary with the

programming language used for developing the parser. In this

study, two java parsers, two C parsers, one perl and one

python parser were used. Five XML documents with sizes

ranging from 160 K to 5.0 MB were used in this study. This

study concluded that C parsers are always faster compared to

java, perl or python parsers.

Mohseni [6]. 2001 performance test indicates that MSXML

rivals other parser having the shortest loading time.

Noga, M., Schott, S., L¨owe, W. [8]. 2002, Therefore efforts

have been made to improve DOM parser performance by

exploiting lazy XML parsing. The key idea is to avoid loading

unnecessary portion of the XML document into the DOM

tree. It consists of two stages. The pre-parsing stage builds a

virtual DOM tree and the progressive parsing stage expands

the virtual tree with concrete contents when they are needed

by the application.

Oren [9]. 2003, proposes Piccolo XML parser presenting a

comparative study between parsers, which implements SAX

(Simple API for XML Processing) 5 interfaces. Although

outdated, this study provided interesting guidelines related to

the test methodology and conclusions about the overall best

API, which changes in subsequent studies for similar tests.

Van Engelen et al. [12]. 2005, uses deterministic finite state

automata (DFA) to integrate them and the DFA is built upon

the schema according to mapping rules.

Takase et al. [13]. 2005, explores a different way to improve

parser performance. It memorizes parsed XML documents as

byte sequences and reuses previous parsing results when the

byte sequence of a new XML document partially matches the

memorized sequences.

Sosnoski [14]. 2005, carried out a test on DOM based parsers

using XMLBench. He tested on the execution speed and

memory usage for a set of XML documents ranging from

small-scale to large-scale file sizes. The test result shows that

Xerces outperforms among the others. Besides, Xerces parser

is also voted as the best XML parser of the year by

XML-Journal/Web Services Journal Readers' Choice Awards

[15-2004].Since Xerces and MSXML outperform the rest of

the parsers in most cases, we have decided to concentrate

benchmarking our proposed parser, xParser against these two

parsers.

Perksins et al. [16]. 2005, where authors use a small (less

than 1 KB) XML representing a typical purchase order

structure to test transcoding impact and object creation of

DOM, SAX and JAX-RPC. The authors also explore the

navigation costs of each API and compare the results with a

specific XPath parser.

A study towards different XML parsers is beneficial when

comes to determine the strength and weaknesses of the

products. Various studies have been conducted which

compare on conformance to standards, speed, memory usage

and so on.

Lam T.C., Ding J.J. and Liu J.C. [20]. 2008, concluded that

the process of handling XML documents was described in

four phases: Parsing, that is considered a critical step in

performance, Access, Modification and Serialization (figure

1), whose performance is directly affected by the parsing

models.

Figure 1. Example of a XML memory tree representation

As the most critical factor of performance, parsing is

characterized by the conversion of characters, mainly related

to the conversion of characters into a format that a

programming language understands, lexical analysis which is

the process that identifies XML elements, e.g. start node, end

node or characters, applying regular expressions defined by

World Wide Web Consortium (W3C)1. The last step of the

parsing phase is the syntactic analysis of the document, where

it is checked if the document complies with the rules of

construction of an XML document. Finally, the API

implements access and modification operations on the data

resulted from the parsing process.

They analyzed parsing models, data representations and their

impact on XML processing. They concluded that both DOM

and VTD are good for back-and-forth data access. VTD

parses faster than DOM and consumes less memory. VTD is

better for simple and rare modifications, while DOM is better

for complex and frequent ones. SAX and StAX are

appropriate for applications with extremely restrictive

memory but not for back-and-forth access or modification. In

a nutshell, DOM is most suitable for database applications,

while SAX and StAX are more appropriate for streaming

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-2, Issue-2, February 2015

 39 www.ijeas.org

applications. VTD is a good candidate for hardware

acceleration based on its symmetric array structure, but its

effectiveness in real-world applications using a commercial

hardware accelerator remains an open question

Due to its complexity and importance, the parsing process is

the most critical operation in XML processing, directly

conditioning processing time and memory consumption.

Several studies have been conducted with the goal to test,

improve representation models and APIs in XML processing.

http://www.w3.org/

As Java and other technologies evolve, it is necessary to

review the new approaches and improvements provided by

several XML parsers available.

Chengkai Li [21]. 2009 concluded in his research that every

XML application has to parse an XML document before it can

access the information in the document and perform further

processing. Therefore XML parsing is a critical component in

XML applications.

DOM is memory intensive since it has to hold the entire

document tree in memory, making it incapable in handling

very large documents.

Sankar, P.Krishna and Shangaranarayanee, N.P. [23].

2011, Concluded that Java API for XML Processing (JAXP),

which process XML documents by using, the Document

Object Model (DOM) method, the Simple API for XML

(SAX) method, and Streaming API for XML (StAX) method

are used commonly. As StAX name indicates, it is targeted at

streaming applications such as the merging of two documents

and exchange information between cooperating entities.

StAX allows an application to process multiple XML sources

simultaneously. Among the DOM and SAX widely used

methods, StAX provides the parsing efficiency and making

developer comfort.

SAX

SAX stands for Simple API for XML. Its main characteristic

is that as it reads each unit of XML, it creates an event that the

calling program can use. This allows the calling program to

ignore the bits it doesn't care about, and just keep or use what

it likes. The disadvantage is that the calling program must

keep track of everything it might ever need. SAX is often used

in certain high-performance applications or areas where the

size of the XML might exceed the memory available to the

running program. The design inspiration and subsequent

coordination was done by Dave Megginson, who continues to

maintain the SAX Project website. The SAX standard

currently is at version 2.0.

SAX is a push parser, since it pushes events out to the calling

application. Pull parsers, on the other hand, sit and wait for

the application to come calling. They ask for the next

available event, and the application basically loops until it

runs out of XML.

A. StAX — Streaming API for XML

The StAX pull-parser has been implemented in the Java

world by a standard called JSR-173. Both Saxon and Data

Direct XQuery support pull parsing. In some instances,

particularly in Data Direct's implementation, pull parsing can

give a significant performance boost, but both

implementations have been so highly tuned that the choice

between SAX, DOM and StAX for any given application is a

matter for testing. Since within Stylus Studio® XML

Enterprise Suite the XML Pipeline constructor knows the

capabilities of each node in the pipeline, this choice is handled

automatically for you.

Figure 2. Architecture View

Traditionally SAX and DOM parsers are use to parse the

XML document. DOM creates tree structure of whole XML

document in main memory and parses the document.

Unfortunately, DOM has some penalty over performance

characteristics. This method involves reading the entire file

and storing it in a tree structure, which may be inefficient,

slow, and it can be a strain on resources. One alternative is

SAX. SAX allows you to process a document as its being

read, which avoids the need to wait for all of it to be stored

before taking action. SAX generates events by fetching

contents from secondary storage during parsing and

unfortunately secondary storage is slower. Data structure

based parser works in main memory and uses various data

structure for parsing. In the implementation, the proposed

parser removes the elements from document and serially

checks if the document is well formed or not using Linked list,

Queue, Stack and Array simultaneously, which increases its

performance over SAX and DOM parser.

I. RESEARCH WORK

Research gaps identified in the proposed field of

investigation:

All available Studies have concluded that a significant portion

of their execution time is being spent in XML data processing

[26], mainly in XML data parsing. The role of data parsing is

to convert the input XML document and divide it into small

elements. It is mainly a significant portion in XML data

processing because an XML document must be parsed before

any other operations can be executed. Studies have shown that

data parsing consumes about 30% of web service applications

[27].

All comparative studies have done in keeping mind about

Parser, means all last compares are performed in context of

just Parsing API. No studies have done in the context of

mechanism or environment or platform which may effect on

time consumption in Parsing of XML document. There are no

study encountered, which find out the impact of operating

system on parsing of XML document.

So there is gap identified that, does an operating system

effects the parsing time of XML document?

Main points included in research are

RQ1- Whether the Operating System effects the processing of

XML DOM parsing?

RQ2- Which OS suit to XML DOM API for giving the better

performance?

RQ3- Whether the processing performance may be improving

in context of OS or not?

http://www.saxproject.org/
http://www.jcp.org/en/jsr/detail?id=173
http://www.stylusstudio.com/xquery/datadirect_xquery.html
http://www.stylusstudio.com/xquery/datadirect_xquery.html
http://www.stylusstudio.com/xquery/datadirect_xquery.html
http://www.stylusstudio.com/xml/pipeline.html

An Empirical Analysis of XML parsing using various operating systems.

 40 www.ijeas.org

IV. RESEARCH DESIGN

We used Descriptive statistics along with 1x3 factorial

ANOVA Technique and for the comparison mean, SD, z-test,

t- test have been performed for data analysis.

V. FUTURE WORK :

In this research we will experimentally compare parsing

performance of one XML API, i.e. PHP DOM API by using

three different operating system, in future we will compare the

different XML API of different companies (in before different

APIs are compared, but of same company like JDOM, SAX,

STAX) like PHP DOM, JDOM, MS DOM, etc, by either

using one operating system or three operating systems.

VI. CONCLUSION

We are working on the parsing technique to find the best

parsing technique for different operating system. We have

displayed the working modal of my research. We use

Descriptive statistics along with 1x3 factorial ANOVA

Technique and for the comparison mean, SD, z-test, t- test

have been performed for data analysis.

REFERENCES:-

[1] Extensible Markup Language, http://www.w3.org/TR/REC-xml.

[2] OASIS, http://www.oasis-open.org.

[3] Juancarlo Anez, "Java XML Parsers-A Comparative Evaluation of 7

Free Tools," Java Report Online, February 1999.

[4] Michael Claben, XML Parser Comparison,

http://www.webreference.com/xml/column22/index.html. Feb 1999.

[5] Clark Cooper, Summary of XML Parser Performance Testing

http://www.xml.com/lpt/a/Benchmark/exec.html. May 05, 1999.

[6] Mohseni, P., “Choose Your Java XML Parser”, 2001,

http://www.devx.com/xml/Article/16921.

[7] Karre, S. and Elbaum, S., “An Empirical Assessment of XML

Parsers”, 6th Workshop on Web Engineering, 2002, pp. 39-46.

[8] Noga, M., Schott, S., L¨owe, W. (2002): Lazy XML Processing. In

ACM DocEng, ACM Press, New York, 2002.

[9] Y. Oren, “SAX Parser Benchmarks”, http://piccolo.

sourceforge.net/bench.html, 2002.

[10] Nicola M. and John J. (2003): XML parsing: a threat to database

performance. CIKM 2003: 175-178.

[11] Elliotte, R.H., “SAX Conformance Testing”, XML Europe, 2004.

[12] Van Engelen, R. (2004): Constructing finite state automata for high

performance XML web services. In Proceedings of the International

Symposium on Web Services (ISWS), 2004.

[13] Takase T., Miyashita H., Suzumura T., and Tatsubori M. (2005): An

adaptive, fast, and safe XML parser based on byte sequences

memorization. WWW 2005: 692-701.

[14] Sosnoski, D.M., “XMLBench”, 2005

http://www.sosnoski.com/opensrc/xmlbench.

[15] XMLJ News Desk, “Journal Readers choice Award”, 2004

http://xml.sys-con.com/read/44008.htm.

[16] E. Perkins, M. Kostoulas, A. Heifets, M. Matsa, and N.

Mendelsohn, “Performance Analysis of XML APIs”, in XML 2005

Conference proceeding, 2005.

[17] Kostoulas M., Matsa M., Mendelsohn N., Perkins E., Heifets A.,

and Mercaldi M. (2006): XML screamer: an integrated approach to

high performance XML parsing, validation and deserialization.

WWW 2006: 93-102.

[18] Farf´an F., Hristidis V., and Rangaswami R. (2007): Beyond Lazy

XML Parsing. DEXA 2007: 75-86.

